Research Statement - Adam Dziedzic

I investigate machine learning, databases, security, and privacy. The overarching goal of my
research endeavors is to cater to the needs of platforms that facilitate collaboration between its
participants to help them analyze data across databases and train machine learning (ML) models
on multiple datasets. In many contexts, such as healthcare and finance, separate parties may wish
to collaborate and learn from each other’s data but are prevented from doing so due to privacy
regulations, such as Canadian PIPEDA and European Union’s GDPR, or system constraints, where
each party may use different model architecture or data storage engine. The core components of
collaborative platforms are federated databases for data analysis and processing, and federated
learning for training and serving of ML models while preserving data privacy and confidentiality.

The first step in ML pipelines is data processing. My work enables efficient data analysis,
transformation, and migration [3, 16,7, 8,19]. I was the main contributor to the BigDAWG federated
polystore engine to enable collaboration within an organization by processing data across diverse
database systems [[14},/18,19]. BigDAWG executes queries using different data models. For example,
it enables simultaneous access to time-series data stored in an array database, text data contained
in a key-value store, and tabular data stored in a relational database. I also extended relational
operators for graceful degradation and the avoidance of performance cliffs in F1 Query, which is a
highly parallel and scalable federated query processing platform at Google that serves the needs of
a large number of users and systems by processing 40 billion queries daily. Next, I helped to build
a recommendation system for hybrid physical designs that caters to mixed of transactional and
analytical workloads [10] in the SQL Server database. The goal behind these efforts is to provide
unified, robust, self-tuning, and self-administering database services.

The next step in ML pipelines, after the data is prepared, is training and inference of ML
models. To increase their performance and enable better resource management in the shared cloud
environment [11},[17] as well as decrease vulnerabilities inherent in ML platforms [5], I built band-
limited convolutional neural networks (CNNs). Convolutions are fundamental signal processing
operations that amplify certain frequencies of the input and attenuate others. My results suggest
that neural networks exhibit a spectral bias and ultimately learn filters with a strong inclination
towards lower frequencies. From the systems perspective, this gives us a knob to tune the resource
utilization, namely, GPU memory and computation, as a function of how much of the high-frequency
spectrum we choose to represent.

In many settings, such as healthcare or finance, sensitive data are stored in databases and used
to train machine learning models. These use cases require data confidentiality and privacy. To
this end, my research focused on new privacy-preserving mechanisms for multi-label classification,
which is a prevalent task in the healthcare setting but understudied in the ML literature. As
an example, an X-ray image can be labeled with one or more pathologies whereas the standard
classification allows us to assign only a single label per input [22]. The new primitive, private multi-
winner voting, allows revealing multi-label outputs while satisfying bounded differential privacy
guarantees, which is the gold standard for rigorous privacy guarantees.

Finally, my research on the CaPC - Confidential and Private Collaborative learning frame-
work [2] integrates these three building blocks. CaPC targets medical and finance domains with
hospitals or banks acting as collaborating parties. CaPC is the first method that provides confiden-
tiality, by operating on encrypted data during the inference time, as well as differential privacy of
the training data for all the collaborating parties. In contrast, standard federated learning (FL)
supports only confidentiality since the shared gradients, parameters, or other forms of model up-
dates, still, leak private information. In fact, recent work shows how an active adversary can easily
reconstruct private data points of individual users during training in FL [1].

The highlights of my research include building a polystore system to enable data analytics over
diverse data models, analysis of neural network models in the Fourier domain that resulted in accel-
eration of their training and inference, as well as creating the first collaborative learning framework
that provides strong privacy guarantees. In the future, I would like to continue this line of work
and solve problems that emerge in the collaborative platforms, specifically creating defenses against
model extraction attacks, providing robustness to out-of-distribution examples, and enabling pri-
vacy protection for various ML tasks, such as multilabel classification.



Data Transformation, Migration, and Indexing

Highlights. I was the main contributor to the BigDAWG polystore system, which enables users to
analyze data across diverse databases. This is especially useful for large organizations that manage
many data engines and want to analyze their data holistically. The main challenge was to design
transformations between databases that support diverse data models and processing types (stream-
ing, transactional, and batch-oriented). Furthermore, large amounts of data require indexing, which
is a complex task. I helped to build a solution that automatically recommends physical designs and
targets cloud-based databases.

Summary. A plethora of new database systems have been created in recent years. This allows
customers to adjust the choice of their database to a specific need. However, many companies end
up with data siloed in different systems. My goal was to address this issue and construct a data-
processing engine that could span many databases and enable data analysis across different data
silos. I designed new tools to enable and accelerate data migration between diverse databases
such as: relational to store structure data, array-based for scientists to analyze numerical data in
the form of multi-dimensional arrays, time-series for detection of temporal trends, and columnar
databases dedicated to large-scale data analysis. I built a fast and reliable data exchange hub that
became a backbone of the BigDAWG polystore system [20].

Once the data is loaded to a given database, users want to access it easily and in a timely man-
ner, which is achieved using common indexing techniques such as B+trees or Columnstores [16].
The primary goal is to automatically recommend indexes that could cater to diverse workloads and
allow reducing the total cost of ownership so that no human intervention is required to maintain a
database. To this end, I carried out a detailed analysis of many index structures and proposed how
to apply them to specific workloads. My study was focused on Hybrid physical designs that combine
B+trees and Columnstore indexes. I precisely characterized the index structures to optimize their
selection for a given workload and showed that Hybrid indexes can provide synergy and orders of
magnitude benefits for mixed workloads that contain many write-intensive transactions as well as
read-heavy decision support queries.

Impact. BigDAWG became a reference architecture in the database community for a polystore
system. The task of selecting indexes is a multi-dimensional optimization problem that is daunting
even for an expert DBA (Data Base Administrator). I helped to extend Database Engine Tuning
Advisor (DTA), a physical design tuning tool for SQL Server, to analyze and recommend both B+
tree and Columnstore indexes when suitable for a given workload. The work was released as part of
the Community Technology Preview (CTP) release of Microsoft SQL Server 2017, which is ranked
as the 3rd most popular database system according to the DB-Engines Ranking.

Band-limited Training and Inference

Highlights. In general, a convolutional filter applies to the entire frequency spectrum of the input
data. However, natural data, such as images or time series, contain the most information in the lower
frequencies. Based on this insight, I created a new form of a neural network called a band-limited
convolutional neural network [4}[11] that artificially constrains the frequency spectra of convolutional
filters and data during training and inference. The band-limited models provide an important gain
in compression (e.g., 50%) with very little compromise in the model performance (up to 1.5% drop in
accuracy), and allow us to effectively control the resource usage (GPU and memory). This method
requires no modification to existing training algorithms or neural network architectures, unlike other
compression schemes.

Summary. I leveraged the Fast Fourier Transformation (FFT) for Convolutional Neural Net-
works (CNNs). The Fourier domain allows us to analyze data in the frequency spectrum and FFT
enables fast transformation from the time or spatial domain to the frequency domain. The main
insight was that neural networks act similarly to humans with respect to frequency analysis. The
human eye is not sensitive to high frequencies that usually represent noise, so we can remove them
to denoise data and reduce the size of the representations.

The design of band-limited models started from the theoretical foundations in the Fourier do-
main and led to the improvement of the convolution algorithms as well as their efficient implemen-
tation on GPUs using CUDA. I designed and implemented a new FFT-based convolutional operation
that selectively constrains the Fourier spectrum utilized during both forward and backward passes
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in the neural network. For the compression, I leveraged new insights about exploiting the conjugate
symmetry of 2D FFT and applied many techniques to improve the efficiency of FFT-based convolu-
tion: fast multiplication of complex numbers, reuse of the frequency maps (computed for the forward
pass and used in the backward pass), operator fusion, an extension of input and filter sizes for faster
FFT transformations.

The experimental results over CNN training for time-series and image classification tasks led
to several interesting findings. First, band-limited models lead to more explainable Al. I showed
that during training, neural networks start learning from the low-frequency coefficients, and as the
training progresses higher frequency coefficients are leveraged. Second, the amount of compres-
sion used during training should match the amount of compression used during inference to avoid
significant losses in accuracy. This provides practitioners with guidance in how to substantially
reduce model memory usage and ensure high-quality outputs. Third, coefficient-based compression
schemes (that discard a fixed number of Fourier coefficients) are more effective than ones that adap-
tively prune the frequency spectra (discard a fixed fraction of Fourier-domain mass). Finally, the
test accuracy of the band-limited models gracefully degrades as a function of the compression rate.

On the systems level, my band-limited method with 50% compression in the frequency domain
results in only a 1.5% drop in accuracy for the ResNet-18 model trained on CIFAR-10 data while
reducing the GPU memory usage by 40% and the computation time by 30% in comparison to the
full-spectra counterparts. Additionally, band-limiting provides a new perspective on adversarial
robustness. Attacks on neural networks tend to involve high-frequency perturbations of input data.
My experiments show that band-limited training produces models that can successfully remove
high-frequency noise produced by some adversaries.

Impact. Overall, band-limiting provides two main benefits: (1) explainable AI through the
analysis of neural networks in the frequency domain, and (2) accelerated execution and reduction
in storage requirements of the convolution operation. The concept was further developed in terms
of theoretical analysis of neural networks from the Fourier perspective, especially in terms of ro-
bustness to adversarial examples. The band-limited models were applied to one of the 5G problems
that involve a fair spectrum sharing [12,13]. Currently, I work on an extension of the approach to
handle more use cases of WiFi setups.

Private Collaborative Learning

Highlights. Collaborative Machine Learning enables multiple parties to learn from each other by
exchanging predictions between their machine learning models. In practice, such a collaboration
operates on sensitive data, where the inputs for predictions have to be kept confidential while the
outputs should not breach the privacy of data used to train the models. In this context, I led a
multi-institutional effort that introduced the first generic framework for collaborative learning which
preserves privacy and confidentiality. Unlike prior work, the framework is agnostic with respect to
the learning technique and model architecture.

Summary. Machine learning benefits from large training datasets, which may not always be
possible to collect by any single entity, especially when using privacy-sensitive data. In many con-
texts, such as healthcare and finance, separate parties may wish to collaborate and learn from
each other’s data but are prevented from doing so due to privacy regulations. Some regulations
prevent explicit sharing of data between parties by joining datasets in a central location (confiden-
tiality). Others also limit implicit sharing of data, e.g., through model predictions (privacy). Before
this work, there was no method that enabled machine learning in such a setting, where both con-
fidentiality and privacy are preserved, to prevent both explicit and implicit sharing of data. Other
approaches to collaboration via ML, for example, Federated Learning (FL) only provides confiden-
tiality, not privacy, since shared model updates contain private information. On the other hand,
differentially private learning protects the privacy of training data but assumes unreasonably large
datasets. Furthermore, both of these learning paradigms produce a central model whose architec-
ture was previously agreed upon by all parties rather than enabling collaborative learning where
each party learns and improves their own local model.

I am leading the project on CaPC Learning: Confidential and Private Collaborative Learning [2]],
which is the first method provably achieving both confidentiality of model inputs and privacy of
model outputs in a collaborative setting. CaPC leverages secure multi-party computation (MPC)
and homomorphic encryption (HE) in combination with differentially private aggregation. The



CaPC protocol allows participants to collaborate without having to explicitly join their training sets
or train a central model. Each party can improve the accuracy and fairness of their model, even
in settings when datasets are non-IID and architectures of ML models in different parties are het-
erogeneous. In CaPC, collaborating parties exchange machine learning model predictions instead
of parameters or gradients, which dramatically reduces both the communication overhead and the
attack space.

The differentially private aggregation had previously only been studied in the single-label set-
ting. However, applications of machine learning to domains like healthcare often involve multi-label
and multi-site data: a patient may have multiple diagnoses made from data located at different in-
stitutions. This requires multi-label inference that is both privacy-preserving and collaborative (i.e.,
supports inference across multiple sites). CaPC introduces the first differentially private approach
to multi-label classification in this setting by providing three new privacy-preserving mechanisms
for voting: Binary, Tau, and Powerset. Binary voting operates independently per label through com-
position. Tau voting bounds votes optimally in their Euclidean norm. Powerset voting operates over
the entire binary vector by viewing the possible outcomes as a power set. These mechanisms enable
privacy-preserving multi-label learning by extending the canonical single-label technique: PATE.
The theoretical analysis shows tradeoffs between the methods, for instance, the Powerset voting
requires strong correlations between labels to outperform Binary voting. The empirical compari-
son of the techniques with DPSGD on large real-world healthcare data and standard multi-label
benchmarks demonstrate that the new techniques outperform all others in the centralized setting.
Finally, the multi-label CaPC with the new privacy-preserving mechanisms can be used to collabo-
ratively improve models in a multi-site (distributed) setting.

Impact. CaPC was a proof-of-concept that opened new possibilities of collaboration via Machine
Learning while not sacrificing data privacy. The method sparked an interest in the industry and
currently, I collaborate with Intel to apply CaPC to real-world problems. Finally, I co-authored
blog posts (e.g., hosted on www.CleverHans.io) that clearly formulate open problems and dissemi-
nate research ideas in a format that engages a large audience to encourage contributions towards
collaborative ML.

Future Work

I am especially interested in how to build robust ML systems [21] for collaboration. On the single
model level, the lack of well-calibrated confidence estimates makes neural networks inadequate in
safety-critical domains such as autonomous driving or healthcare. The pre-trained transformers
detect out-of-distribution (OOD) examples surprisingly well in comparison to previous methods,
such as LSTMs [15[. However, there remains room for future research and one direction is to propose
new self-supervised objectives that can enhance model robustness. In the vision domain, my goal
is to investigate new approaches to increase the OOD robustness, for example, by analyzing the
internal representations in convolutional layers and harnessing statistical tests to provide a well-
founded estimation of uncertainty.

From the perspective of a participant in collaborative learning protocols such as CaPC, model
stealing is one of the major concerns since many organizations use proprietary algorithms to solve
their problems. Differential privacy is used to protect training data in CaPC but it does not prevent
model extraction, where an adversary with black-box access but no prior knowledge of an ML model
aims at duplicating the functionality of the victim model. Current active defenses against model
extraction perturb model outputs, which lowers the quality for legitimate users. Passive defenses
try to detect an attack but do not work for attackers with in-distribution data. The reactive defenses
against model extraction attacks, such as watermarking, address model extraction after an attack
has been completed. Instead, I propose to design pro-active defenses that prevent model stealing
before it succeeds. One of the methods requires users to complete a proof-of-work (POW) or proof-
of-elapsed-time (POET) before they can read the model’s predictions. This increases the running
time of model extraction without lowering the quality of model outputs. Intuitively, the method
shifts the trade-off between the quality of answers and robustness, that was introduced by previous
defenses, to a trade-off between the computational cost or elapsed time and robustness to model
stealing. The preliminary results show that this pro-active defense can deter attackers by greatly
increasing (even up to 100x) the time needed to leverage query access for model extraction. These
efforts will lead to creating collaborative platforms while protecting the privacy of data and models.
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