Columnstore and B+ tree —
Are Hybrid Physica

Designs Important?
Adam Dziedzic, Jingjing Wang, Sudipto Das,

Bolin Ding, Vivek R. Narasayya, Manoj Syamala

=" Microsoft

=4 THE UNIVERSITY OF

W/ CHICAGO

UNIVERSITY of
WASHINGTON

Physical designs for diverse workloads
OLTP

Physical designs for diverse workloads
OLTP Analytics

Physical designs for diverse workloads
OLTP Analytics

B+ tree & Columnstore on same table = Hybrid design,

Physical designs for diverse workloads
OLTP Analytics

Are Hybrid Designs important and which workloads can benefit?

Hybrid design = B+ tree & Columnstore

I -“ i .“ EVALUATE
B+ tree a AUTO

RECOMMEND

Hybrid design = B+ tree & Columnstore

1. Micro-benchmarks
2. Auto Recommend Hybrid Designs

3. End-to-end evaluation

Micro-benchmarking HYBRID DESIGNS

QUERIES

Mix: Scans &
Updates

Concurrency

PHYSICAL DESIGNS

i I

Experimental setup for micro-benchmarks

= Synthesized queries and data sets + TPC-H data
= Pre-release version of SQL Server 201/

= Server: on-premise

= Dual socket Intel® Xeon® CPU E5-2660v2, 10 cores per socket, 2 threads per
core, clocked at 2.20 GHz, 64 KB L1 cache per core, 256 KB L2 cache per core,
and 25 MB L3 cache shared

= 384 GB main memory

= 18 TB HDD in RAID-0 configuration (throughput of ~1 GB/sec for reads and
~400 MB/sec for writes)

B+ tree Range Scans vs. Col Full Scans

SELECT sum(coll) FROM table WHERE coll < {1}

100,000
§ 10,000
E 1,000
v 1
g 00
p 10
O

= 1
@)

§<j 0

10 GB, 1 int col
i -+B+ tree hot
1 1 1 1

o (o) LN N —i o0 o (o) (@) o N~ (@\| o LN o o o
© ©O © 9 9 O O O g o — N < © O
LL LL 8 O. o. o o o —
o (@) . o o
o o O .
0 < Selectivity (%)

10

B+ tree Range Scans vs. Col Full Scans

100,000
@ 10,000
£ 1000
v 1
g 100
2 10
IS

= 1
O

% 0

SELECT sum(coll) FROM table WHERE coll < {1}
10 GB, 1 int col

-+B+ tree hot

N O
—i

25 _

N
o O

0.0002 _
0.001
0.008

0.03
0.06
0.09

8.00E-06
4.00E-05

Selectivity (%)

Skip data effectively & run single-threaded

o
#

o
O

100

11

B+ tree Range scans vs. Col Full scans

SELECT sum(coll) FROM table WHERE coll < {1}

100,000 -)

= 10 GB, 1 int col

o 10,000 -

K%,

= 1,000 -

E 0.03%

.Gé 100 - Dy =

s 10 -

.g --Col hot -+B+ tree hot

s 1

g<J O 1 1 1 1

L O OW N N d 0 M ©W oo N N O In O o o
O © © © © © © O & o a4 N S © O
w w S 2 2@ o o o —
o O o o
S O O
0 < Selectivity (%)

Superior performance of Columnstore scans 12

B+ tree Range Scans vs. Col Full Scans

100,000 - SELECT sum(coll) FROM table WHERE coll < {1}

= 10 GB, 1 int col e

O 1OIOOO 7 G G G G G G G G G a G G G @& & @& @& @& ':- - a»

= Y i ,

= 1,000 - ’ /

£ o~ 0.03%

'Gé 100 - '::;-"'

st 10 JeqrfN_ o N - =Col cold - =B+ tree cold

Q2 1

o+ -

3 —-Col hot —+B+ tree hot

g<J O I I I I

- ©O VW 1N &N =4 W M VW O M N N O 1N O O O
O © © © © © © O & o - N § © O
w w S 2 2@ o o o -
o O o O
Q <9 ©
o <

Selectivity (%)

B+ tree helps for low selectivity & slower storage

13

B+ tree Range Scans vs. Col Full Scans

100,000 - SELECT sum(coll) FROM table WHERE coll < {1}

— 10 GB, 1 int col 10% _e===""

O 1OIOOO 7 G G G G G G G G G a G EaEaaaEa @& (» ’:- P b a»

Rl S =™ P

= P 4

= 1,000 - ’ /

£ -~ 0.03%

.G§J 100 - ':j;, -5 o000 b8

st 10 JeqrfN_ o N - =Col cold - =B+ tree cold

O

o -

3 1 —-Col hot —+B+ tree hot

X 0

X I I I I

L O OW N N d 0 M ©W oo N N O In O o o
O O © © © O O O &5 & a4 N S © O
w w S 2 2@ o o o i
o O o o
o o O
0 <

Selectivity (%)

B+ tree helps for low selectivity & slower storage

14

Sorted B+ tree vs. Unsorted Col

90,000 - SELECT coll, sum(col2) FROM table
’580,000 GROUP BY coll
:‘=f 70,000 - 20 GB, 2 Int col,
£ 60,000 - Vvarynumber of distinct values in coll
GEJ 50,000 -| B+ treesorted on coll

= 40,000 -

.5 30,000 - M B+ tree = Col
320,000 -

L% 10,008 - . .

100 10,000
of groups

15

Sorted B+ tree vs. Unsorted Col

90,000 - SELECT coll, sum(col2) FROM table
’580,000 | GROUP BY coll
:czf 70,000 - 20 GB, 2 Int col,
£ 60,000 - Vvarynumber of distinct values in coll
© 50,000 | B+ treesorted on coll

= 40,000 -

.g 30,000 - MW B+ tree m Col
320,000 -
L% 10,000 ~ . .
0 |
100 10,000
of groups

Scanning & hashing Col faster than reading sorted B+ tree

Sorted B+ tree vs. Unsorted Col

90,000 - SELECT coll, sum(col2) FROM table
ES0,000 | GROUP BY coll
:czf 70,000 - 20 GB, 2 int col,
£ 60,000 { Vvary number of distinct values in coll
© 50,000 | B+ treesorted on coll

= 40,000 -
E 30,000 - M B+ tree = Col

320,000 -
& 10,008 - . .

100 10,000 1,000,000
of groups

Sort order of B+ tree beneficial for scarce query memory

17

Two types of Columnstores in SQL Server
Primary Columnstores

= Base table storage . .
= Optimize large scans A
= Complicated updates . .

on compressed columns
= Updates via the delete . . /\
DItMap are expensive Compressed Delete Delta

row groups bitmap stores

18

Two types of Columnstores in SQL Server

Secondary Columnstores

= Designed to balance
performance of long . .

scans and updates

= Delete buffer stores

Compressed Delete

= Requires anti-semi JOIN row groups bitmap

Key not in

Delete
buffer

stores

19

Mixed workload: large scans & small updates

Update top 10 rows

1,000,000
100,000
10,000
1,000

100

10

1

Execution time (millisec)

Hybrid design
M Pri. B+ tree = Pri. B+ tree with Sec. Col
TPC-H 30 GB, 10 concurrent queries, Read Committed

scan: O,update: 100
Percentage (%) for scans and updates

M Pri. Col

20

Mixed workload: large scans & small updates

Update top 10 rows Hybrid design

M Pri. B+ tree ™ Pri. B+ tree with Sec. Col M Pri. Col

1,000,000 - , ,
TPC-H 30 GB, 10 concurrent queries, Read Committed

100,000 -
10,000 -
1,000 -
100 -

10 -

1 -

Execution time (millisec)

scan: O,update: 100
Percentage (%) for scans and updates

B+ trees cheaper than Columnstores for pure updates y

Mixed workload: large scans & small updates

Update top 10 rows, Select sum of quantity & price for a single shipdate from lineitem table

M Pri. B+ tree ™ Pri. B+ tree with Sec. Col M Pri. Col
TPC-H 30 GB, 10 concurrent gueries. Read Committed

1,000,000 -~
100,000 -
10,000 -
1,000 -
100 -
10 -

1 -

(millisec)

Total execution time

scan: O,update: 100 scan: 5, update: 95
Percentage (%) for scans and updates

Secondary Columnstore: balance small updates & large scans

Hybrid design = B+ tree & Columnstore

1. Micro-benchmarks
2. Auto Recommend Hybrid Designs

3. End-to-end evaluation

Database Engine Tuning Aadvisor (DTA)

Workload,
Constraints

(e.g. storage
budget)

DTA

Database
Server

- Query
<What Ifﬁ Optimizer

Create Index
Output Drop Index

24

Database Engine Tuning Aadvisor (DTA)

Workload,
Constraints

(e.g. storage
budget)

DTA

Database
Server

- Query
<What Ifﬁ Optimizer

Create Index
Output Drop Index

25

Database Engine Tuning Aadvisor (DTA)

Database
Server

Query
Optimizer
Create Index
v

Workload,
Constraints

(e.g. storage
budget)

Database Engine Tuning Aadvisor (DTA)

Workload,
Constraints

(e.g. storage
budget)

DTA

Database
Server

- Query
<What Ifﬁ Optimizer

Create Index
Output Drop Index

27

Extensions to SQL Server Query Optimizer
Augment the “what-if” API for:

1. Costing queries on
Hypothetical Columnstores

28

Extensions to SQL Server Query Optimizer
Augment the “what-if” API for:

1. Costing queries on
Hypothetical Columnstores

2. Per-column size estimation
- stay within storage budget
- per-column access cost
- hard problem

29

DTA extensions for hybrid designs

1. Optimal designs searched over:

combined space of
Columnstores & B+ trees

30

DTA extensions for Hybrid Designs

1. Optimal designs searched over:

combined space of
Columnstores & B+ trees

2. Released as part of
SQL Server 2017 CTP

31

Hybrid design = B+ tree & Columnstore

1. Micro-benchmarks
2. Auto Recommend Hybrid Designs

3. End-to-end evaluation

End-to-end evaluation of hybrid designs

» 5 customer workloads, TPC-DS, and CH benchmark
= Homogenous design

= B+ tree only (for each query, tune with DTA's B+ tree index recommendations)
= Columnstore only (secondary Columnstores on all tables for all possible columns)

= Hybrid design
= B+ tree and Columnstore indexes recommended by DTA (Database Engine Tuning Advisor)

= Speedup = (time on Homogenous) / (time on Hybrid)

= Metrics: median execution time & CPU time (per query)
= Warm execution & working set in memory

= The same hardware & software as for micro-benchmarks

33

Hyorid Query Plans are common

100%

380%

60%

40%

20%

Percentage of query plans

0%

.||Il

Custl

Cust2

Cust3 Cust4
m Hybrid Query Plans

Cust5

TPC-DS

34

Hyorid Query Plans are common

,, 100%
-
©
o 80%
-
S 60%
O
o 40%
(0] 0]
(¢e)
e 20%
S
9 0%

Custl Cust?2 Cust3 Custd Cust5 TPC-DS

m Hybrid Query Plans

®m Hybrid Query Plans (Same Table)

35

Columnstores & B+ trees selected by DIA
50 -~

TPC-DS benchmark M Hybrid Vs B+ tree only

40 - 100 GB
kd -
o 30 -+
§ 23
4 20 -+
3+ 10 10 10

10 4 7 5 5

O _J I . I I I . I I I I I I I
0.5 0.8 1.2 1.5 2 5 10 >10

Bins of Sp.eedup (CPU time)

36

Columnstores & B+ trees selected by DIA
50 -~

TPC-DS benchmark B Hybrid Vs B+ tree only

40 4 100 GB
L
o 30 -
§ 23
4 20 -+
H 10 10 10

10 4 7/ 5 5

1 m B m 1 1

0.5 0.8 1.2 1.5 2 5 10 >10
Bins of Speedup (CPU time)

37

Columnstores & B+ trees selected by DIA

50 + 46
TPC-DS benchmark B Hybrid Vs B+ tree only
40 | 100 GB
i W Hybrid Vs Columnstore only
= | 27
23;30 53
w20 -
o 10
i 10 4 7/ 5
1
O]
0.5 0.8 1.2 1.5 2 5 10 >10

Bins of Speedup (CPU time)

38

Columnstores & B+ trees selected by DIA

of Queries
N W
o o

[E
o O

Bins of Speedup (CPU time)
Hybrid designs significantly improve decision support workload

Example: Hybrid Design for TPC-DS Q54

= Q54: several selective predicates on dimension table: date_dim

= DTA: B+ tree index on date_dim as well as fact tables catalog_sales and web_sales
» 20X reduction in execution cost of leaf nodes (8,000 ms to 400 ms),

= 10X reduction in query execution cost (from 26,000 ms to 2,600 ms)

.. Col scan B+tree ;eek
hash join 4—-| date dim —cted. date_dim
L| loop join B+tree seek
web_sales
concatenate Col scan
web_sales B+tree seek

nested-loop date_dim
Col scan ioin — k
+tree see
Columnstore-only design catalog_sales

Hybrid design catalog_sales

CH Benchmark: OLTP + Analytics

15 cores for analysis queries, 5 cores for transactions, workload runs 6 hours, 1K warehouses

20 -
B Hybrid Vs B+ tree only (Snapshot Isolation)

No. of Queries
(@)
|

3
o M__¢
0.5 0.8 1.2 1.5 2 5 10 >10

Bins of Speedup (wall-clock time)

41

CH Benchmark: OLTP + Analytics

15 cores for analysis queries, 5 cores for transactions, workload runs 6 hours, 1K warehouses

20
B Hybrid Vs B+ tree only (Snapshot Isolation)

No. of Queries
)

Bins of Speedup (wall-clock time)

2X slowdown of transactions & 10X speed-up of analytics .

Summary

Hybrid Designs: crucial for mixed workloads
= Hybrid physical designs should not be ignored!

= Effective even for read-only queries

» Small slowdown for OLTP transactions and
10X or more speed-up of complex analytical queries

= DTA can recommend combination of Columnstores and
B+ trees

= Several open challenges

= Columnstore size estimation

= Modeling concurrency effects o

Thank you

»

~f==3 THE UNIVERSITY OF

m Microsoft

&y CHICAGO

EEEmE.
E
| Ead 11
.]
.-

| BIR)
" -
il ‘u';” .

W

UNIVERSITY of et o
WASHINGTON 2 |

Notes

= Primary index — means that this is the main storage of the data

= Mixed workload insight: as soon as we have one big scan, the
Hybrid Design provides much better performance

= Primary Columnstores not efficient for mixed workloads

= DJA — optimization tool + access to the query optimizer via the
what-if AP

= SQL Server Columnstore not globally ordered
= Explore when to use B+ tree or a Columnstore
= SQL supports hybrid designs (not new, already there)

ease apart performance characteristics

VECTORIZED Selectivity
COMPRESSED values

LATE
MATERIALIZATION

Sortedness

SORTED GLOBALLY
FAST MODIFICATIONS
MEMORY EFFICIENT

48

Takeaways from micro-benchmark analysis

B+ tree

point lookups
& short scans

balance scans
& updates

large & fast
scans

streaming via
sortedness

Leverage both
B+ tree & Col

Batch-mode &
compression

49

Key takeaways from end-to-end evaluation

improve

- —ber|d designs can result in 10X to 100X
ment in execution costs compared to B+ tree

or Columnstore only designs

=D

designs is cost-based and workload-dependent

A — automated recommendation of hybrid p

= Open challenges for hybrid designs in query
optimization, concurrency, and locking

nysical

50

Compression with RLE & GEE estimator
A BN A BEEENA B
30 0.0 3 0 0 8 B

0, 1 0,3

30 0.1

3 1 l
0 0.0 0O O 3 O 11 3
10 0.0 1T 0 5| 32
30 0.1 3 1 3 '
30 0.1 3 1 3

Initial sample Encoded Sorted by BA ~ Compressed

GEE estimator groups that occur once in the sample are scaled by total size

/ sample_size (e.g. [0,1] and [1,1]), other groups are counted once In total y

Columnstore size estimation

= Not scalable to scan and apply encodings on the
whole dataset

= Estimate per column/segment sizes using sampling

= For each column segment: 1) encode values
2) determine optimal row ordering 3) compress.

= Variety of encodings, row ordering optimization ana
compression technigues make size estimation hard

Customer workloads and benchmarks

of Avg. # |Avg.
tables of cols |queries |of joins |of ops

per
table

Cust1 172 23 63.8 14.1 36 7.2 29.1
Cust2 44.6 614 44.6 23.5 40 8.1 28.3
Cust3 1384 3394 79.8 26.3 40 8.7 24.1
Cust4 93 22 54.8 20.3 24 6.9 24.4
Cust5 983 474 1.52 5.5 47 23.1 57.7

TPC-DS KM 24 34.9 17.2 97 7.9 28.2
TPC-CH 11 217

53

Motivation
= Wide variety of workloads with different usage characteristics:
OTLR OLAPR Mixed workloads (e.g. real-time analytics)

= Mixed workloads imply need for Hybrid Physical Designs to
achieve good performance

= SQL Server supports a wide variety of Physical Design options

= What are the ramifications of Hybrid Designs for auto-
indexing in SQL Server?

Major Questions

= Efficient data skipping and sort order of B+ tree vs.

efficient vectorized processing of Columnstores

= What are the trade-offs?
= Data skipping
= Concurrency
= Memory constraints

= Impact of updates on B+ trees & Columnstores

= Primary (clustered) and secondary (non-clustered) have different designs

= Performance of Hybrid Designs for Mixed Workloads
- short updates and reporting queries scanning data

55

Two types of Columnstore Indexes (CSls)

Ke Union

= CSl updatable via
auxiliary structures

O O

Ol

nerfo

= Primary CSI designed

Imize scan

‘mance In DW

= No delete buffer in primary CS],
making small updates expensive

1A
1A

A
A

Compressed Delete| Delete Delta
row groups bitmap] buffer stores 57

Characteristics: B+ tree, Col & hybrid

SORTED B+ TREE

PRIMARY B+ TREE

&
SECONDARY COLUMNSTORE

NOT SORTED GLOBALLY COLUMNSTORE

COLUMNSTORE PRIMARY STORAGE
&
SECONDARY B+ TREE

Takeaways from micro-benchmark analysis

short range scarce
scans & lookups memory
B+ tree

Balance

updates & scans Ce

workload

large scans &
bulk updates

small storage
footprint

59

Takeaways from Microbenchmark analysis

= B+ trees: suitable for point lookups, short range scans, update-only
= Sortedness of B+ trees only help when memory is insufficient
= Secondary CSls strike a right balance between scans and updates

= Hybrid physical designs are essential for many mixed workloads
where updates often have selective predicates

B+ tree III

60

Mixed Workload: CH BenCHmark

= A join between TPC-C benchmark with the analytical
H component from TPC-H

= C component: unmodified TPC-C schema and 5
transactions

= H component: 3 additional tables and adapted 22
queries which mimic TPC-H queries

= Concurrent gueries compete for resources & locks
= Affinitize component C & H to different cores

Why is Columnstore size estimation hard?

Large data & design Complex storage
space N N N
0.03
llll w o o MW
2, 3
0.02 2 2
3,2
0.03 3 3
0.02 2 3
Input Encode Sort Compress
1) Build index on samples

Sample based techniques 2) Model full index

62

Hypothetical Columnstore size estimation
Model full index

Build index on samples

= Simple
== NoO changes required
when index storage modified or w

algorithms and store index)

_OwW accuracy

High overhead (run

=£= More accurate

== No overhead of sorting

iting index to disk

- |

igh maintenance cost

= Complex (uses GEE

estimator)

63

Hypothetical Columnstore size estimation

= Correctness: do not go over storage budget
= Efficiency: cannot afford to build the whole index

= Accuracy:

= estimate the size on samples of data
* model complex storage involving encoding, sorting and compression

64

Update performance

1,000,000 - M Pri. B+ tree [Pri. B+ tree with Sec. Col ® Pri. Col
O
Q
= 100,000 + UPDATE N rows lineitem
£ 10000 - WHERE 1 shipdate = {1}
GEJ TPC-H 30 GB, single thread
S 1,000 ~
S
= 100 -
>
O
* 10 -
L

1 -

0.01 0.02 5.12
% of updated rows

Primary & Secondary Columnstores comparable for large updates_

Hyorid Query Plans are common
100%

380%
60%
40%

20%

Percentage of queries

0%

Custl Cust2 Cust3 Custd Cust5 TPC-DS

B Hybrid Plans (Same Query) ™ Hybrid Plans (Same Table) ﬁ

06

Update performance

1,000,000 - M Pri. B+ tree [Pri. B+ tree with Sec. Col ® Pri. Col
&)
&,
= 100,000 1 UPDATE N rows lineitem
£ 10000 - WHERE 1 shipdate = {1}
GEJ TPC-H 30 GB, single thread
S 1,000 -
c 19 X
= 100 - 1
>
&)
X 10 -
R

1 -

0.01 0.02 5.12 40.98
% of updated rows

Primary Columnstores incur high cost for small updates .

Update performance

,\1’000’000 i M Pri. B+ tree [Pri. B+ tree with Sec. Col m Pri. Col
O
)
= 100,000 - UPDATE N rows lineitem ¢
£ 10000 - WHERE 1 shipdate = {1} ¢
GEJ TPC-H 30 GB, single thread
i 1,000 -
S
S 100 - ‘1’ ‘1’ I
>
O
= 10 - .II
L

1 -

0.01 0.02 5.12 40.98

% of updated rows

Cheaper updates for B+ trees than for Columnstores

68

Why is Columnstore size estimation hard?

Large data & design Complex Columnar storage

space N N
0.02 2 2
2, 3
0.02 2 2
3,2
0.03 3 3
0.02 2 3
Input Encode Sort Compress
At least as hard as

Sample based techniques distinct value estimation

Hyorid Query Plans are common

,, 100%
-
©
o 80%
-
S 60%
O
o 40%
(0] 0]
(¢e)
e 20%
S
9 0%

Custl Cust?2 Cust3 Custd Cust5 TPC-DS

m Hybrid Query Plans

®m Hybrid Qeury Plans (Same Table)

70

Why is Columnstore size estimation hard?

Large data & design Complex Columnar storage

space N N
0.02 2 2
2, 3
0.02 2 2
3,2
0.03 3 3
0.02 2 3
Input Encode Sort Compress
At least as hard as

Sample based techniques distinct value estimation

Mixed workload: large scans & small updates

Update top 10 rows, Select sum of quantity & price for a single shipdate from lineitem table

1,000,000 - M Pri. B+ tree 1 Pri. B+ tree with Sec. Col M Pri. Col
?100,000 -

3 10,000 -

()

£ 10 -

‘é 1 | . .

= scan: scan: 2, scan: 3, scan: 4, scan: 5,
§ O,update: | update: 99 | update: 98 update: 97 update: 96 update: 95
L 100

Percentage (%) for scans and updates
Secondary Columnstore: balance small updates & large scans

Differences to Kester et al. (sections 2.4 & 4)

Concept Access Path Hybrid designs
Selection

B+ tree Main memory General (disk-
optimized based)

Scans Shared Non-shared

DB engine Prototype SQL Server

Main focus Model DTA and many
Concurrency workloads

Physical designs Columnstore and Hybrid Physical

Secondary B+tree Designs .

yorid Designs

Primary B+ tree (base table) Heap file base table
Secondary Columnstore Secondary Columnstore
Secondary B+tree on ship date Secondary B+tree on ship date

B+ tree

clustered
on order &
linenumber

74

yborid Designs

Primary B+ tree (base table) Primary Columnstore |
Secondary Columnstore Secondary B+ tree on order/line

Secondary B+ tree on ship date Secondary B+ tree on ship date

B+ tree
B+ tree on order &

clustered linenumber

on order &
linenumber

75

Database Engine Tuning Aadvisor (DTA)

Workload

Constraints
- Storage
budget

=

1) Select
candidates

2) Merge
Indexes

3)
Enumerate

— NV O O

DTA

Output

DB Engine
what-if
Query

Optimizer

i \ Apply

Create Index
Drop Index
Create View

76

Database Engine Tuning Aadvisor (DTA)

DB Engine
what-if
1) Select Query

Workload candidates C Optimizer
|
' O
Constraints 2) Merge
- Storage Indexes S
bUdgEt I T App[y
- 3) Create Index
numerate Drop Index
DT A Output »Create View

Database Engine Tuning Aadvisor (DTA)

Workload

Constraints
- Storage
budget

1) Select
candidates

2) Merge
Indexes

3)
Enumerate

DTA

Output

DB Engine

Query
Optimizer

i \ Apply

Create Index
Drop Index
Create View

Database Engine Tuning Aadvisor (DTA)

DB Engine
what-if
1) Select Query

Workload

candidates C Optimizer

|

' O

Constraints 2) Merge
- Storage Indexes S
budget : T
i 3) Create Index

numerate

Drop Index

DT A Creati View

79

B-tree index

Clustered|columnstore index

App

I~

Rowgroup 3

RO\W\

Delta store

Rowgroup

Rowgroup 1

Delta store

Primary Columnstore &
Secondary B+ tree index:

- Efficient point-lookups and
small range scans \w B+ tree

- enforce constraints
efficiently (e.g. Primary Key)

Source: Real-Time Analytical

Processing with SQL Server —
Paul Larson, Adrian Birka, Eric
Hanson, Welyun Huang, Michal
Novakiewicz, Vasstlis
Papadimos (Microsoft)

80

