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In reality, test distribution will not match training
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Out-of-Distribution Robustness

Two Goals:

e Generalize

e [etect

—

Image Credit: Aleksander Madry



Our Paper’s Goal

e How robust are current NLP models?



Our Paper’s Goal

e How robust are current NLP models?

e \Why might transformers be brittle?
o high accuracy != high robustness [Hendrycks and Dietterich, 2019

o use superficial dataset patterns (Gururangan et al. 2018
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Pearson Correlation (%)

Pretrained Transformers are More Robust
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Accuracy (%)
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Bigger Models Are Not Always Better



Bigger Models Are Not Always Better

SST-2 Model Size vs. Accuracy Drop

(%) Adeunddy qainl - Adeanddy Z-1SS



Pretrained Transformers Are Better OOD Detectors



Pretrained Transformers Are Better OOD Detectors

e softmax probability for scoring anomalies [Hendrycks and Gimpel, 2017)



Pretrained Transformers Are Better OOD Detectors

e softmax probability for scoring anomalies [Hendrycks and Gimpel, 2017)

e feedin OOD inputs and report false alarm rate at 95% recall



False Alarm Rate (%)
(Lower Is Better)
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Pretrained Transformers Are Better OOD Detectors

Detecting OOD Examples for an SST-2 Sentiment Classifier
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Conclusions

OOD benchmark for four NLP tasks

Pretrained Transformers improve OOD generalization
Pretrained Transformers improve OOD detection
Further work needed to make models robust
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https://github.com/camelop/NLP-Robustness
https://arxiv.org/abs/2004.06100

