Private Multi-Winner Voting for Machine Learning

Adam Dziedzic, Christopher A Choquette Choo, Natalie Dullerud, Vinith Menon Suriyakumar, Ali Shahin Shamsabadi, Muhammad Ahmad Kaleem, Somesh Jha, Nicolas Papernot, Xiao Wang

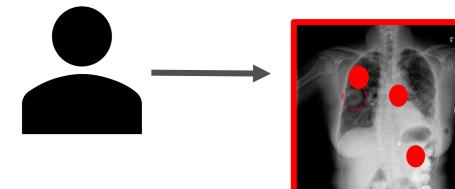
Single-Label vs Multi-Label Classification

Single-Label vs Multi-Label Classification

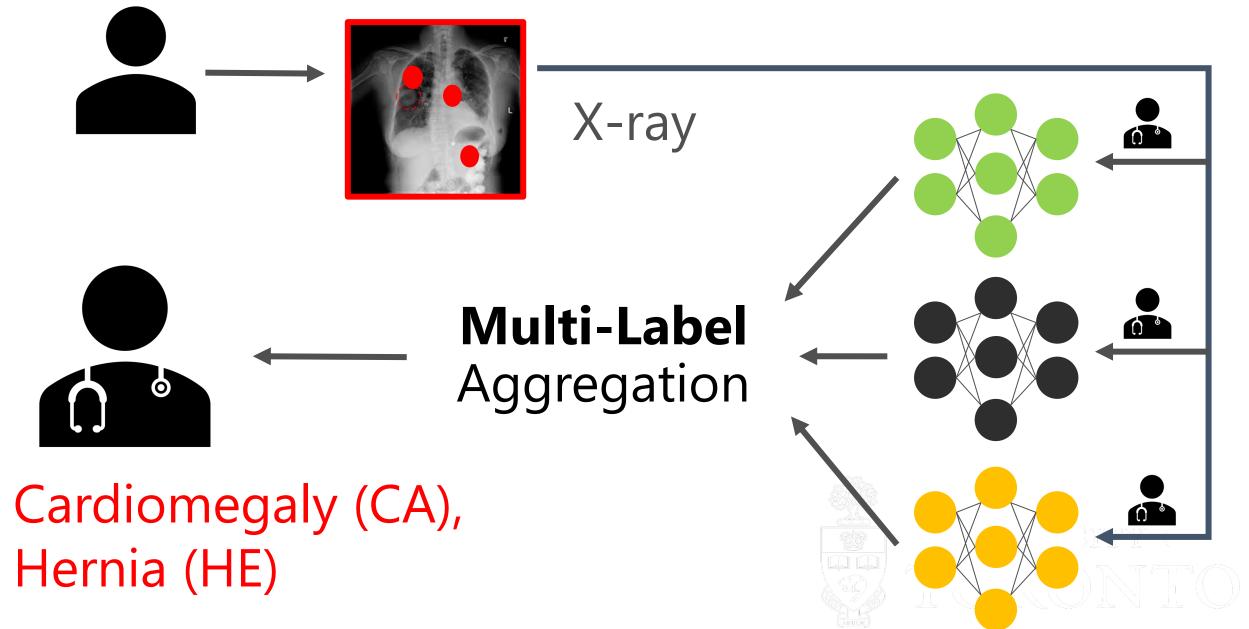
Multi-Label:

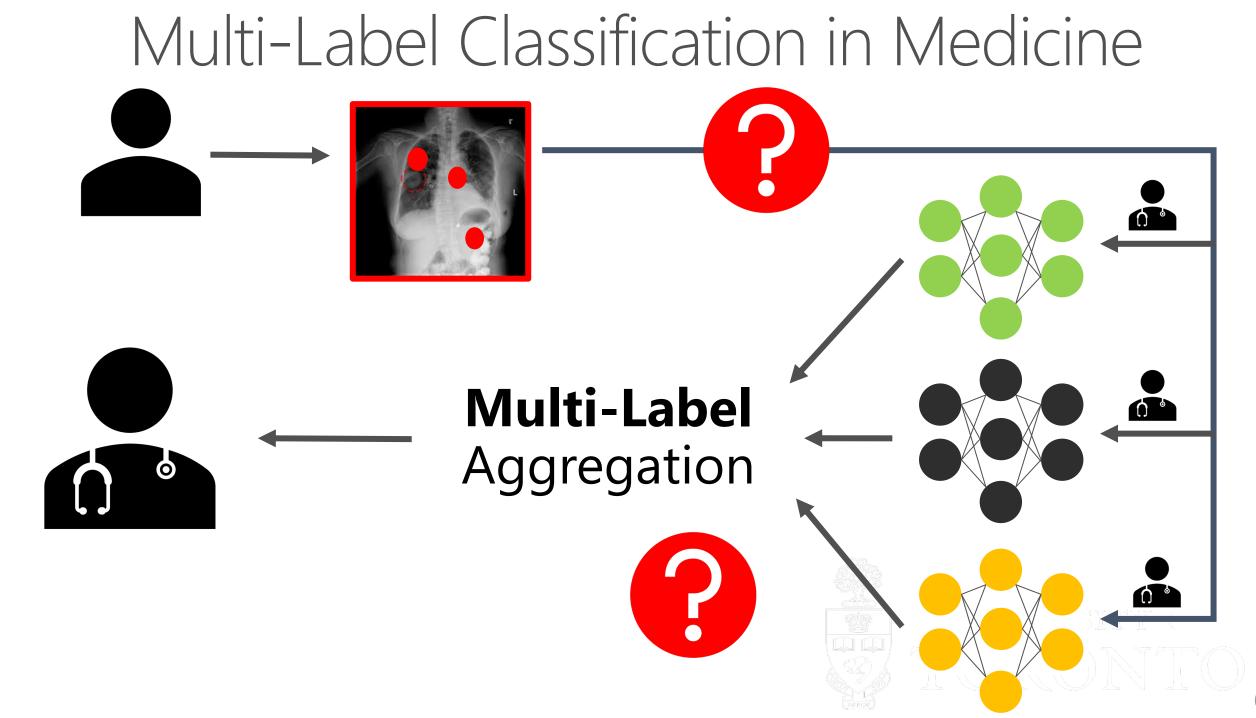
Cardiomegaly (CA) - enlarged heart Edema (ED) - fluid trapped in a tissue Hernia (HE) - organ bulges out

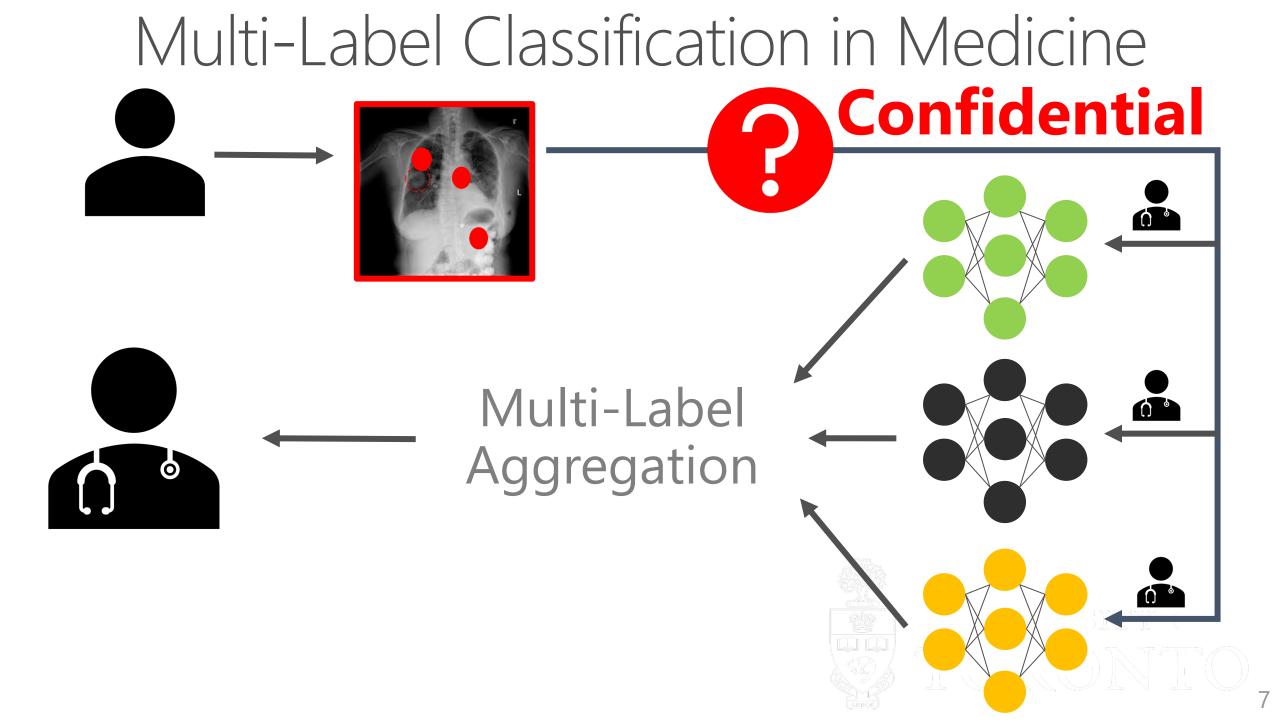
Multi-Label Classification in Medicine

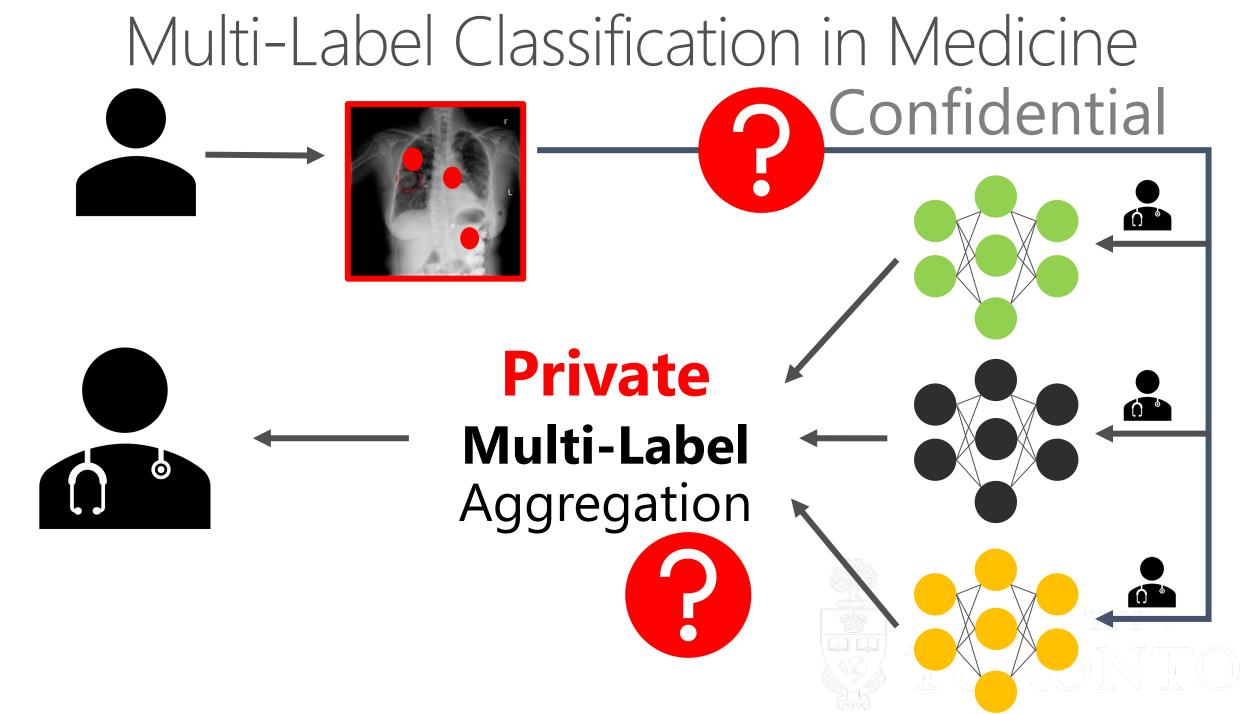


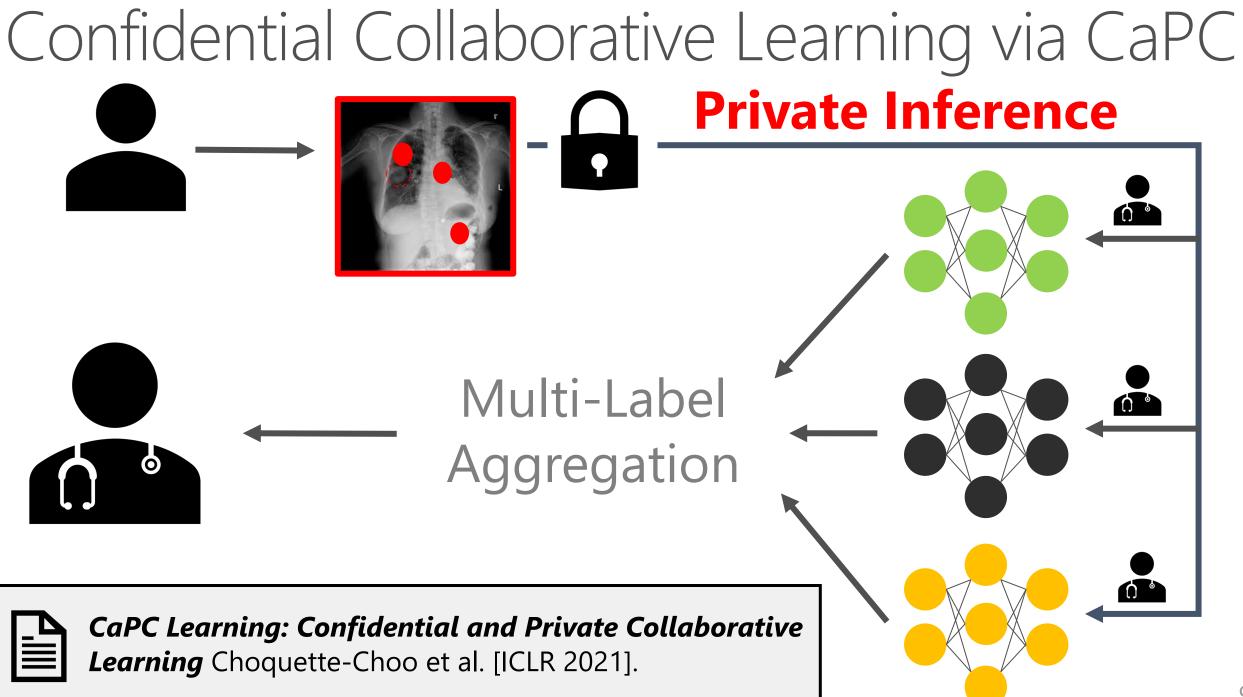
Multi-Label Classification in Medicine

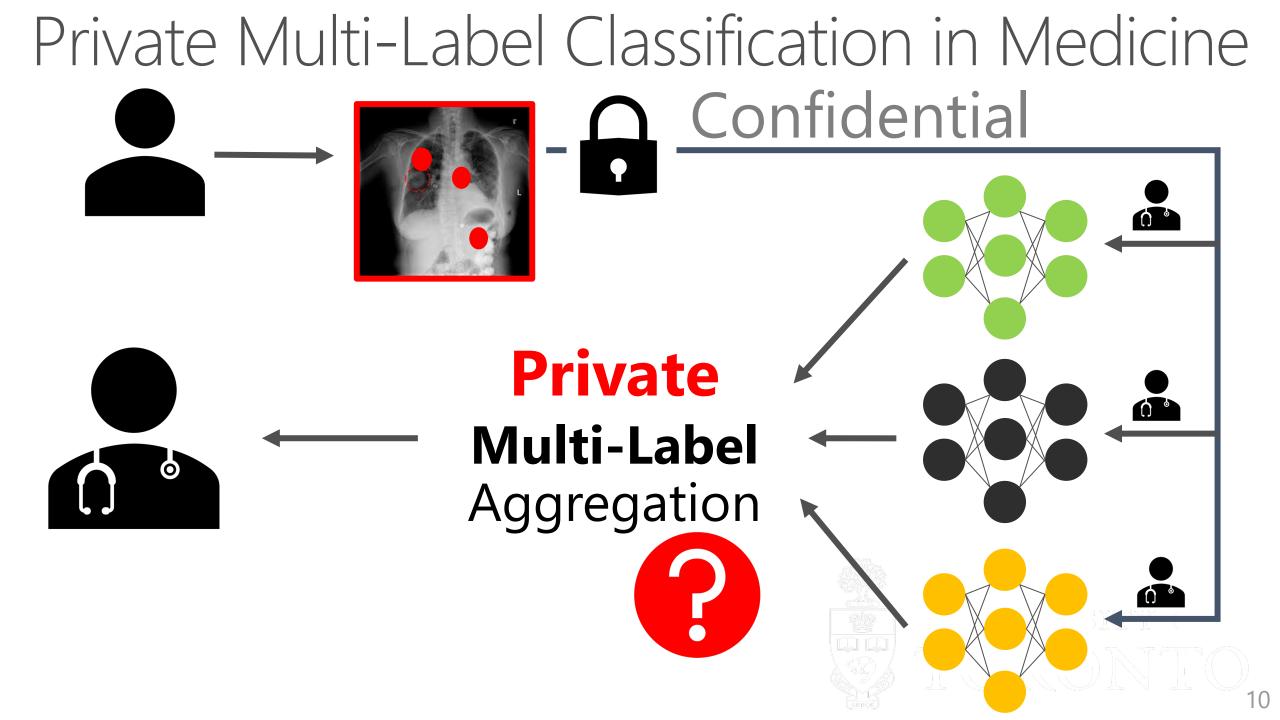


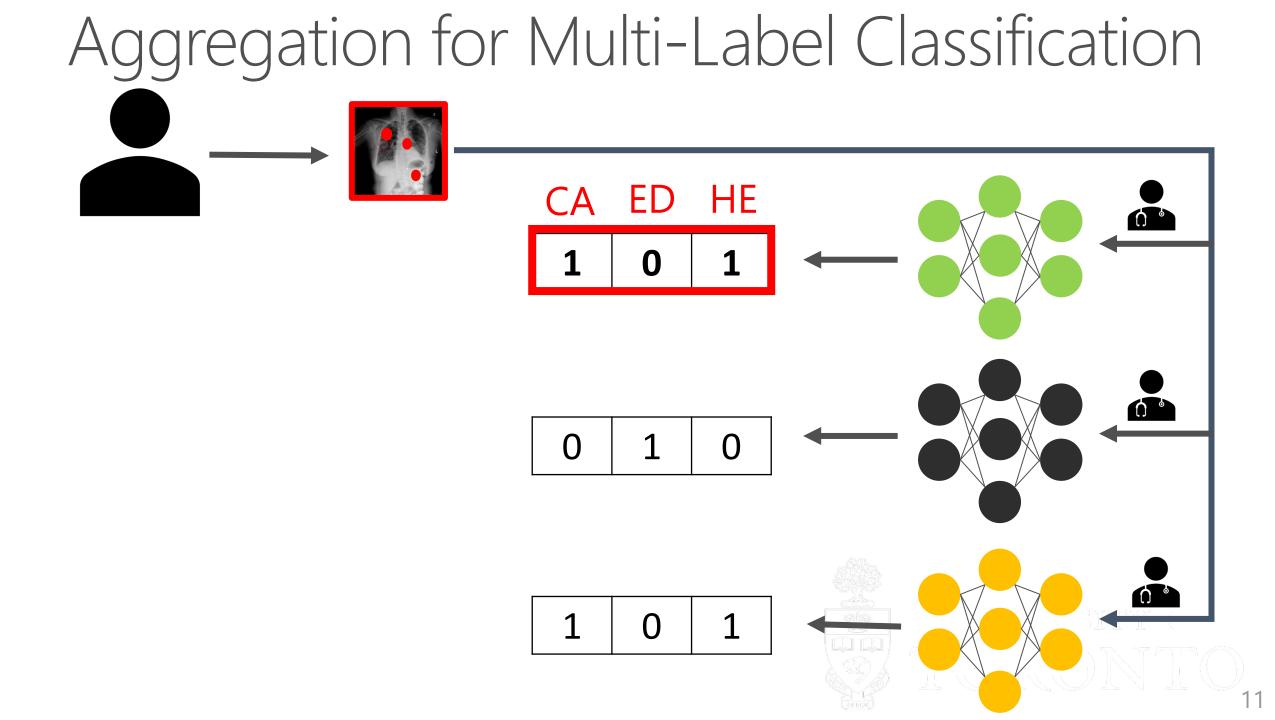


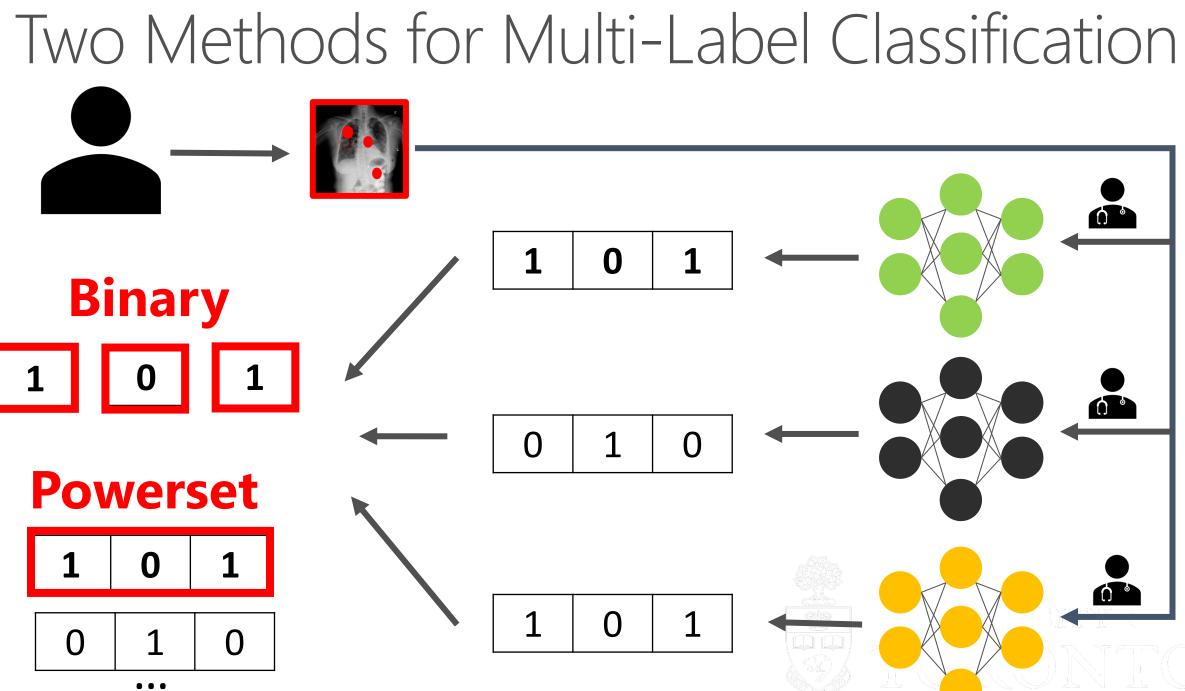


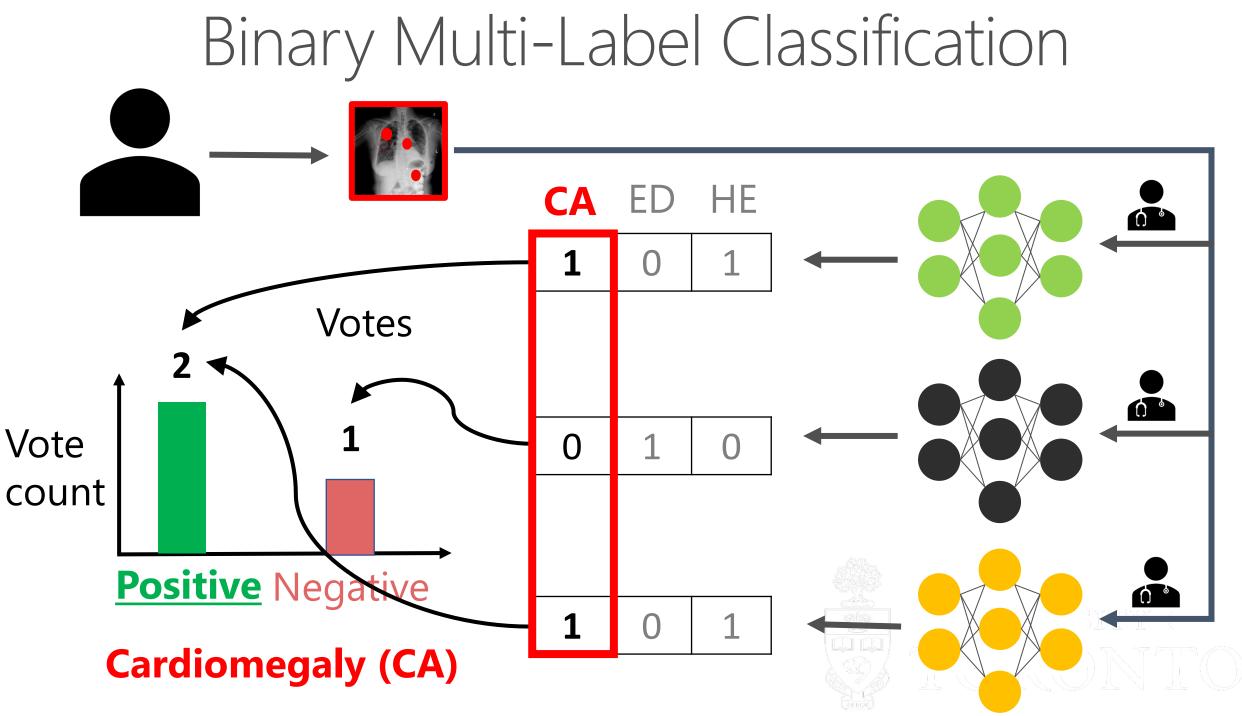




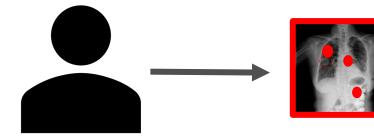




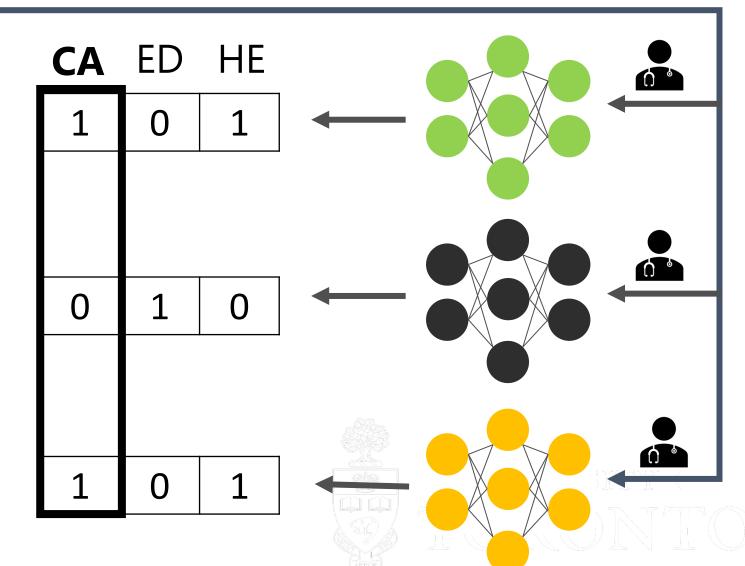




Private Binary Multi-Label via Noisy ArgMax



PATE framework with DP



Gaussian Noise

Vote count

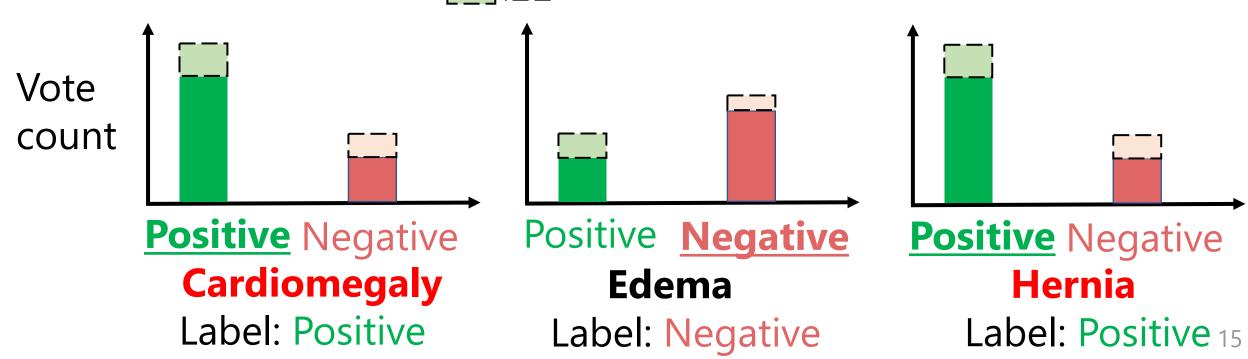
Positive Negative

Cardiomegaly (CA)

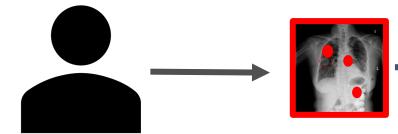
Private Binary Multi-Label Classification

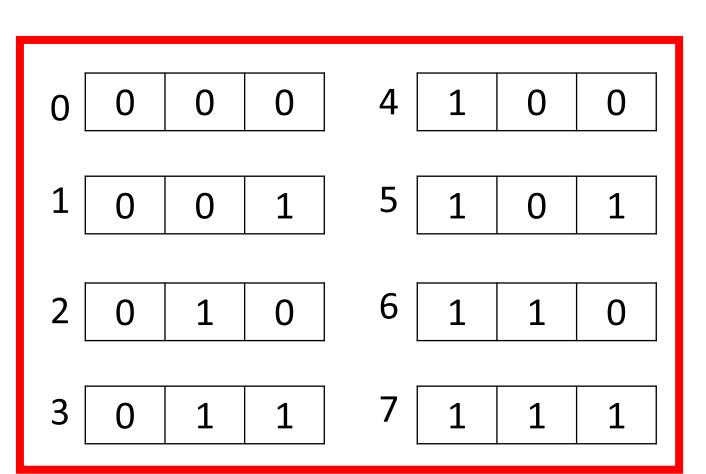
Multi-winner election for a set of voters each with a vote per label

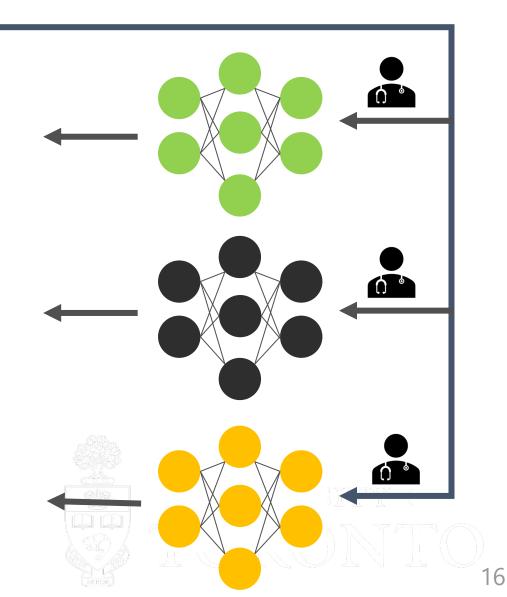
Gaussian Noise



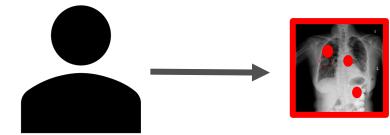
Alternative **Powerset** of All Possible Votes



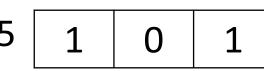




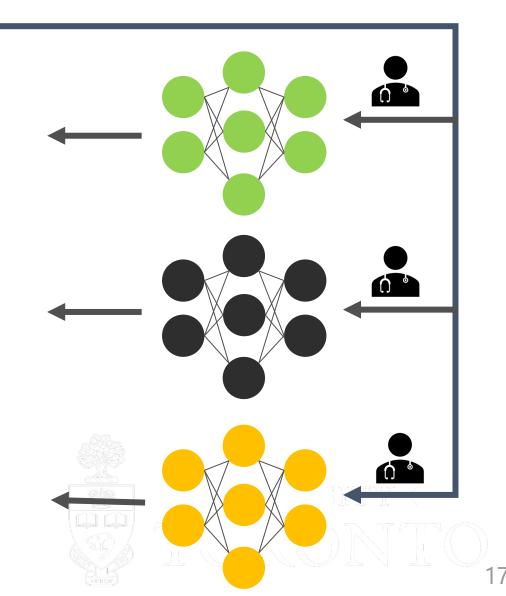
Alternative **Powerset** Multi-Label Classification



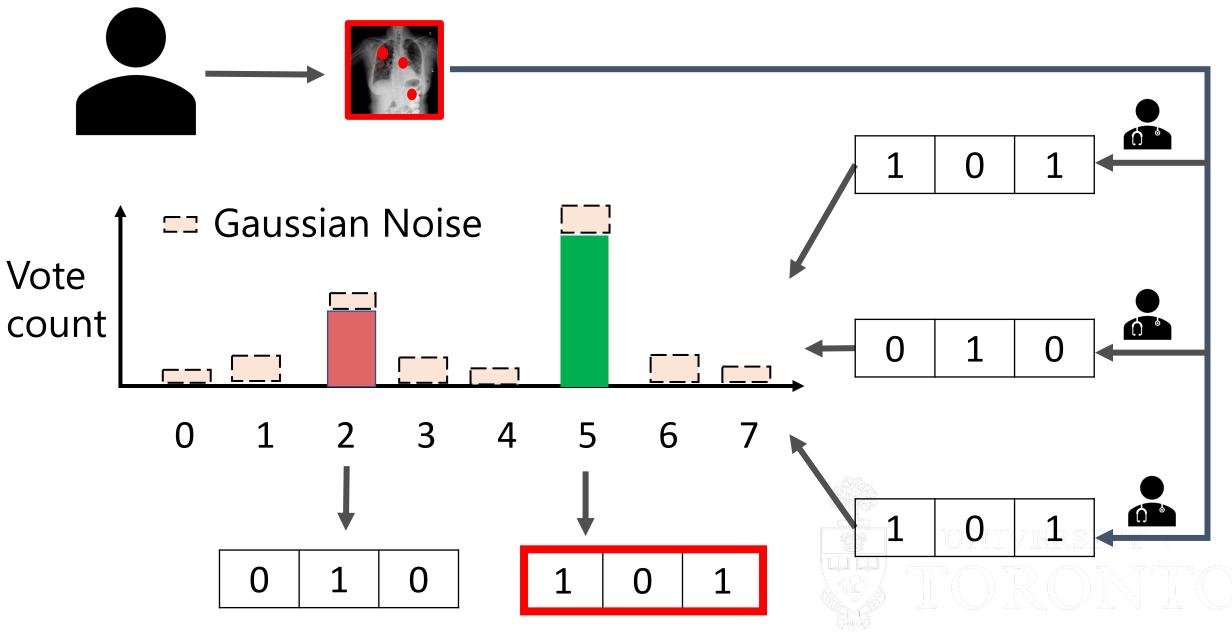
of classes grows exponentially: 2^N



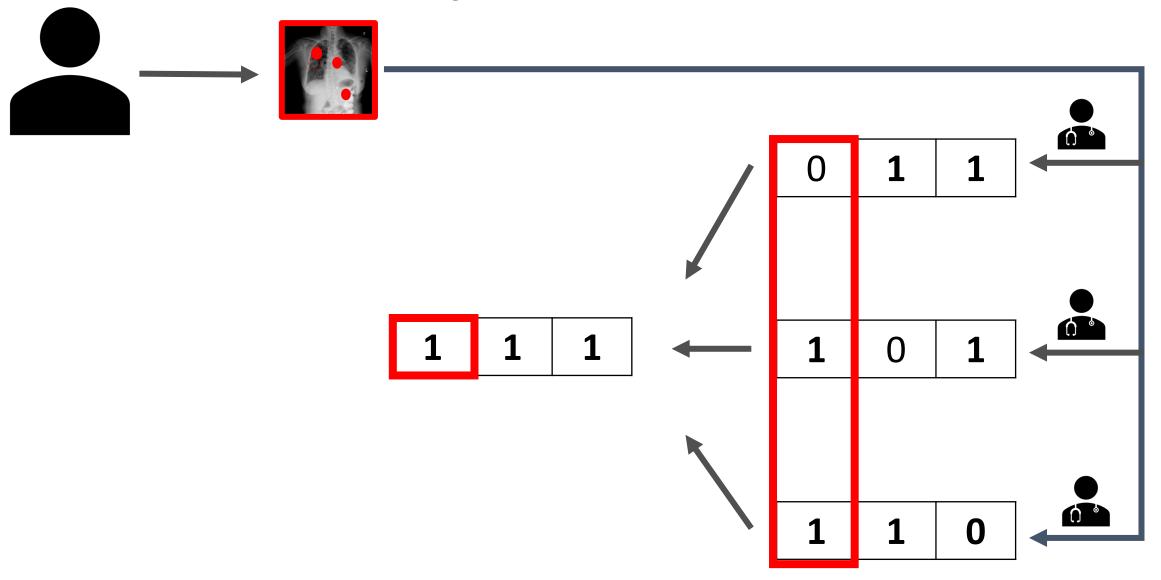
1

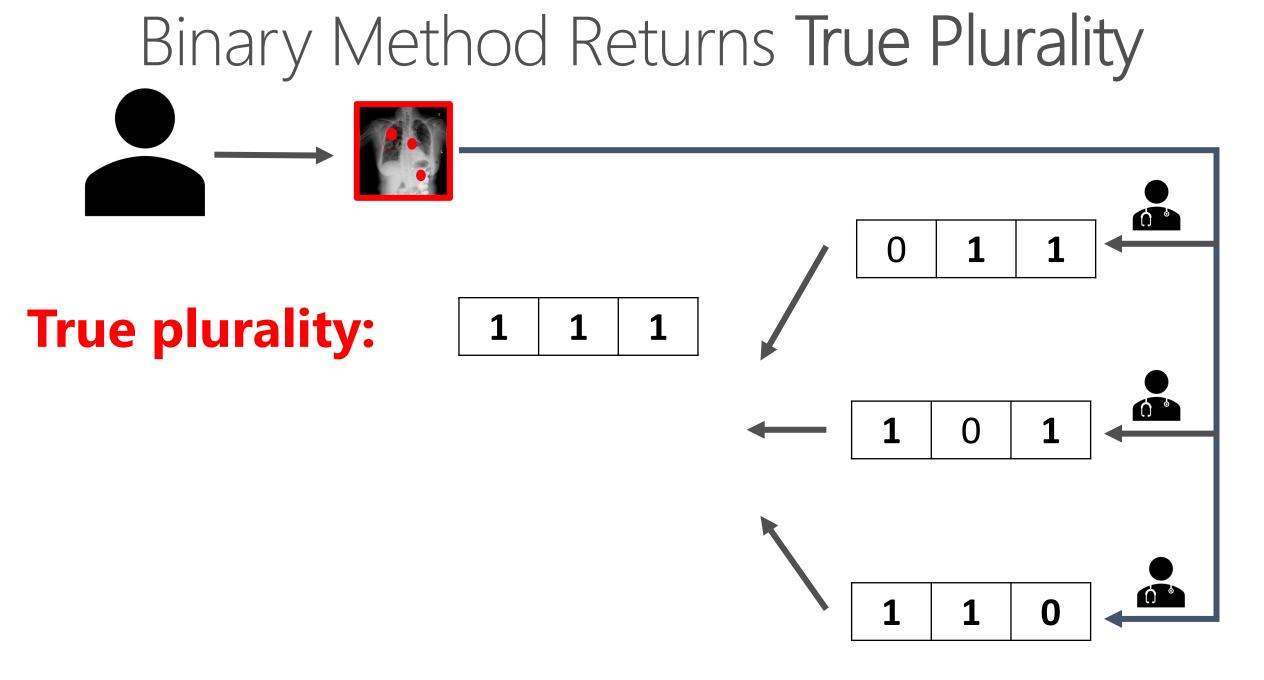


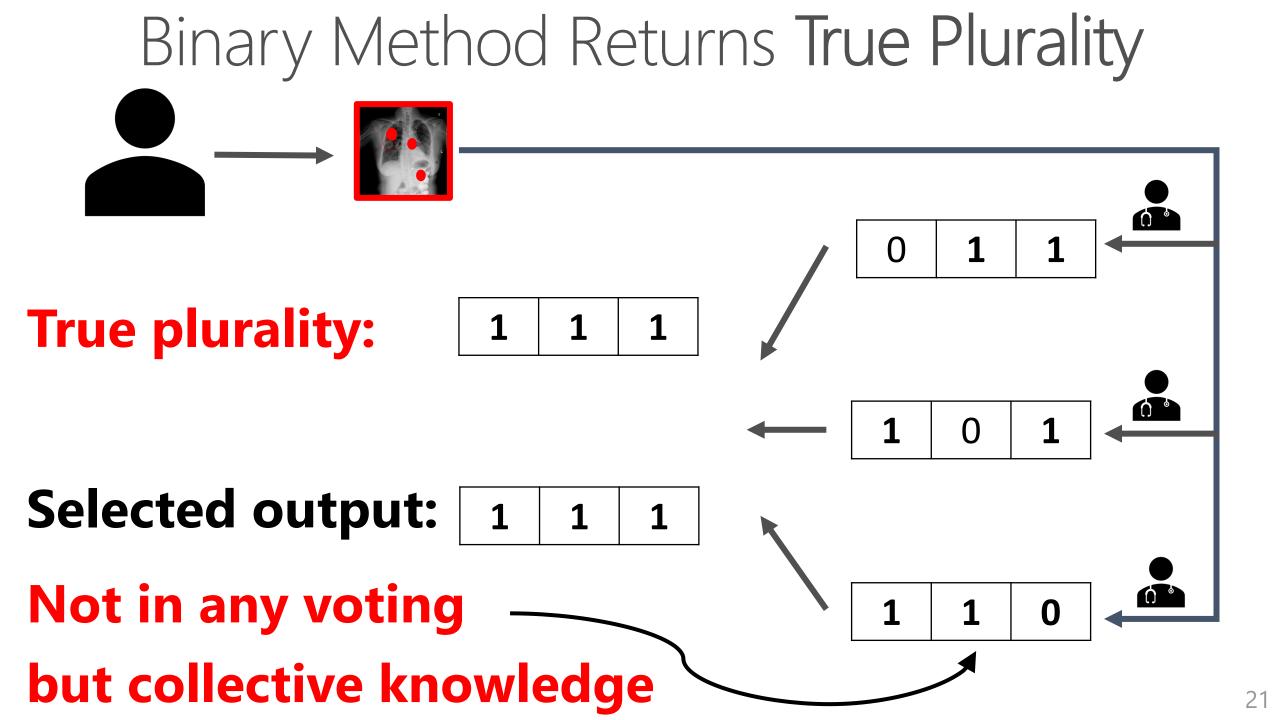
Powerset Multi-Label Classification



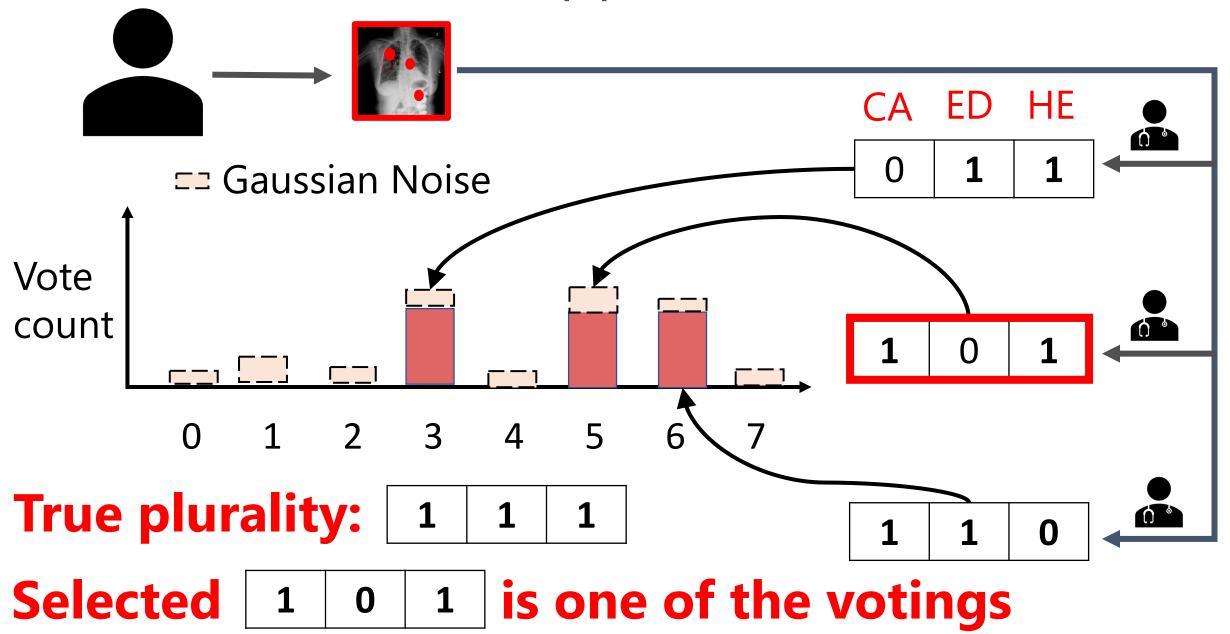
Binary vs Powerset

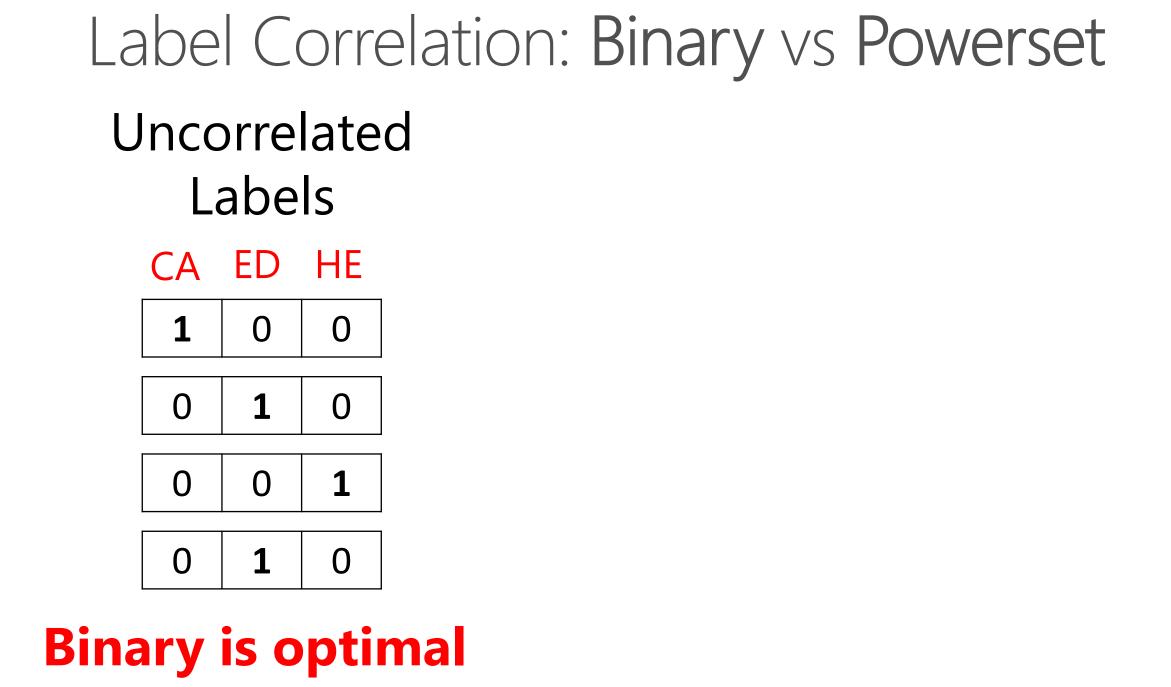


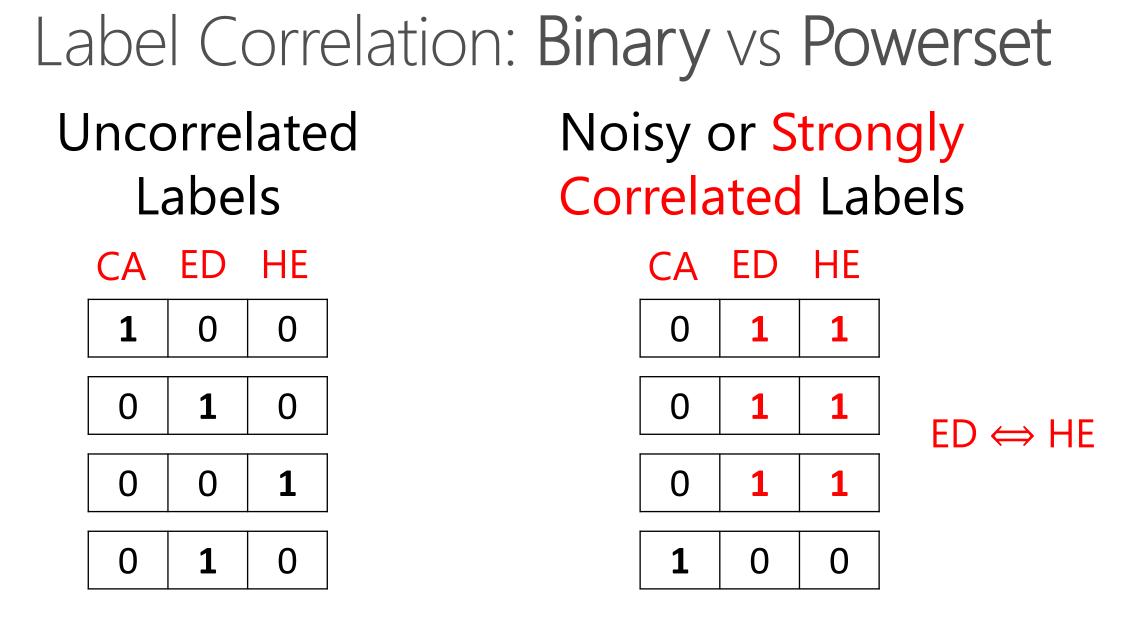




Powerset Method Approximates True Plurality

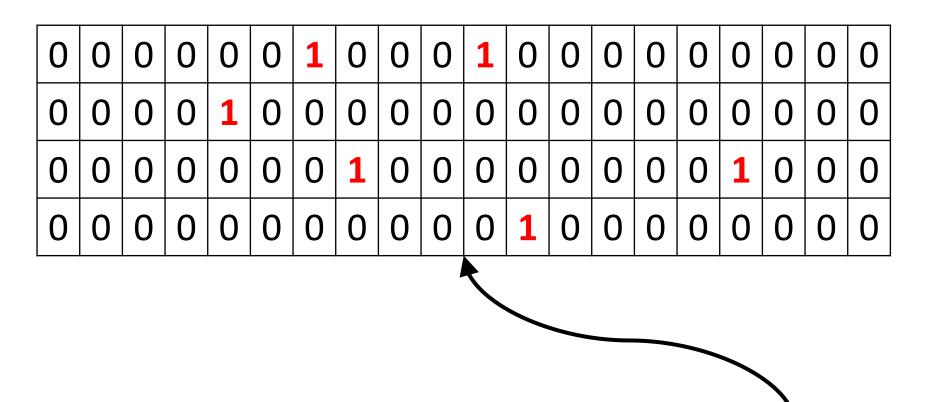






Binary is optimal Powerset performs better

Clipping the Number of Positive Votes



Pascal VOC Dataset Avg. 2 out of 20 labels

Clipping Positive Votes per Answering Party

$$b_{j} = \boxed{1} \boxed{1} \boxed{1}$$
Max 2 votes
$$b_{j} = \min\left(1, \frac{\tau}{\|b_{j}\|_{2}}\right) b_{j}$$

L₂ clipping for Binary

Clipping Positive Votes per Answering Party

$$b_{j} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$
Max 2 votes
$$b_{j} = \min\left(1, \frac{\tau}{\|b_{j}\|_{2}}\right) b_{j}$$

$$\|b_{j}\|_{2}^{2} = 2$$

$$b_{j} = \sqrt{2}/\sqrt{3} \sqrt{2}/\sqrt{3} \sqrt{2}/\sqrt{3}$$

L₂ clipping for Binary

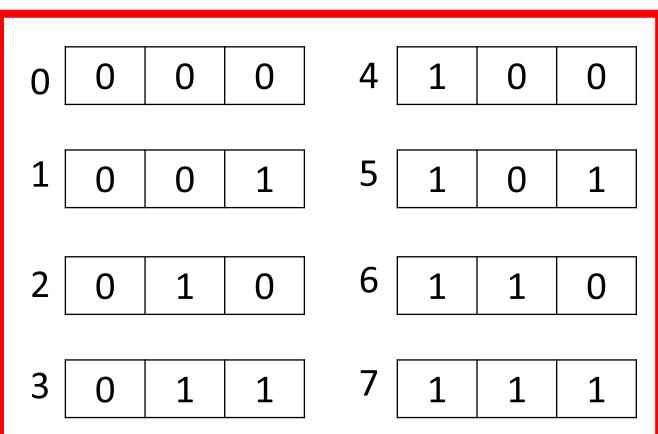
Clipping Positive Votes per Answering Party

$$b_{j} = \boxed{1} \boxed{1} \boxed{1}$$
Max 2 votes
$$b_{j} = \min\left(1, \frac{\tau}{\|b_{j}\|_{2}}\right) b_{j}$$

$$\|b_{j}\|_{2}^{2} = 2$$

$$b_{j} = \sqrt{2}/\sqrt{3} \sqrt{2}/\sqrt{3} \sqrt{2}/\sqrt{3}$$

Max 3 votes



L₂ clipping for Binary

All Powerset classes

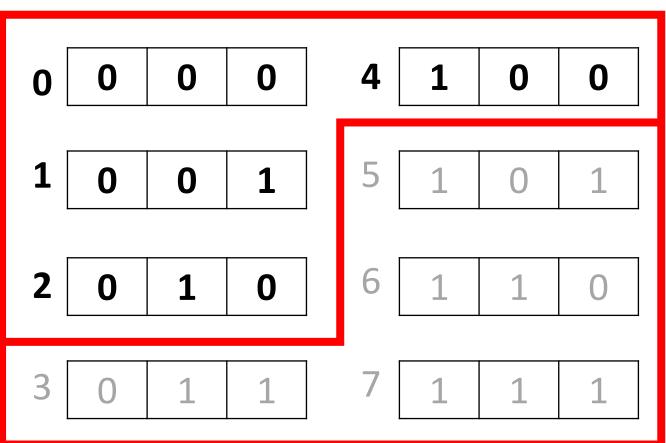
Clipping Positive Votes per Answering Party

$$b_{j} = \boxed{1} \qquad 1 \qquad 1$$
Max 2 votes
$$b_{j} = \min\left(1, \frac{\tau}{\|b_{j}\|_{2}}\right) b_{j}$$

$$\|b_{j}\|_{2}^{2} = 2$$

$$b_{j} = \sqrt{2}/\sqrt{3} \sqrt{2}/\sqrt{3} \sqrt{2}/\sqrt{3}$$

Max 1 vote



L₂ clipping for Binary Fewer classes for Powerset

Metrics for Multi-Label Classification

Accuracy (ACC) = (TP + TN) / (P + N)

Balanced Accuracy (BAC) =
$$\frac{1}{2}$$
(TPR + TNR)

Area-Under-the-Curve (AUC) = $\int_0^1 t(f) df$, t(f) = TPR / FPR

Mean-Average-Precision (MAP) = TP / (TP + FP)

Compare Binary vs Powerset Mechanisms

Pascal VOC, 20 labels, ResNet 50, $\varepsilon = 20$, $\delta = 1e^{-5}$

Method	ACC	BAC	AUC	MAP
Non-private	0.97	0.85	0.97	0.85
DPSGD	0.92	0.50	0.68	0.40
Powerset	0.94	0.58	0.70	0.29
Binary	0.94	0.62	0.85	0.57

Confidential & Private Collaborative Learning

Pascal VOC, 20 labels, ResNet 50, $\varepsilon = 20$, $\delta = 1e^{-5}$

Method	ACC	BAC	AUC	MAP
Before	0.93	0.59	0.88	0.54
After	0.94	0.64	0.89	0.55

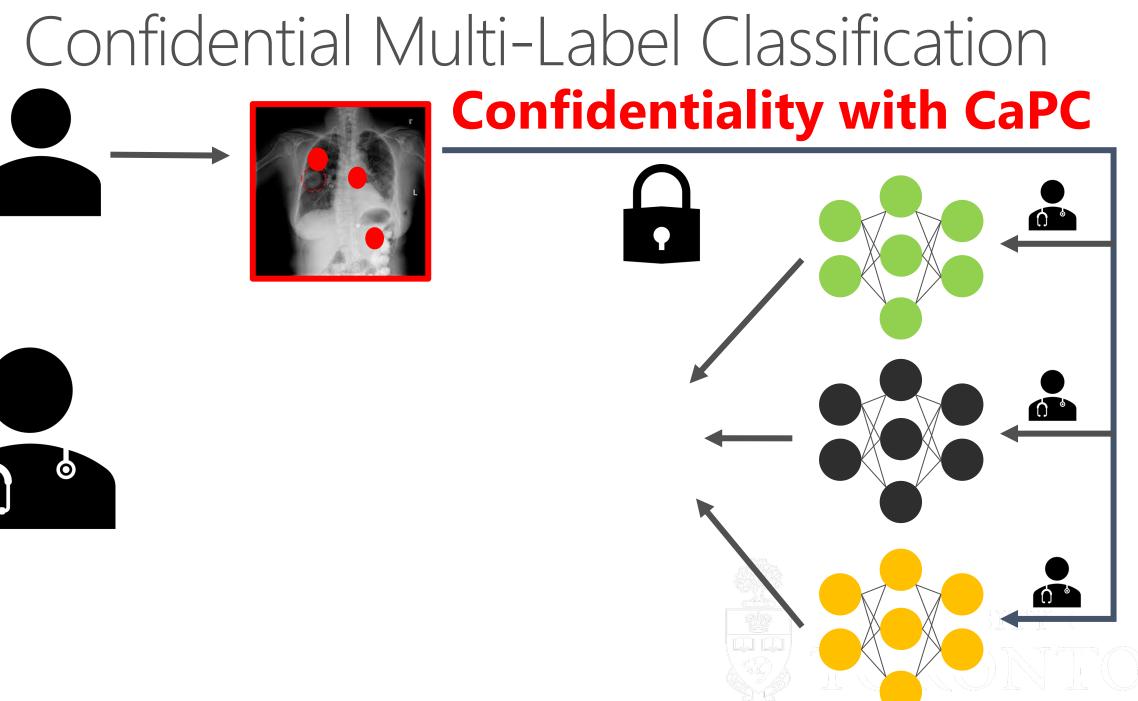
Models Improve with Multi-Label CaPC

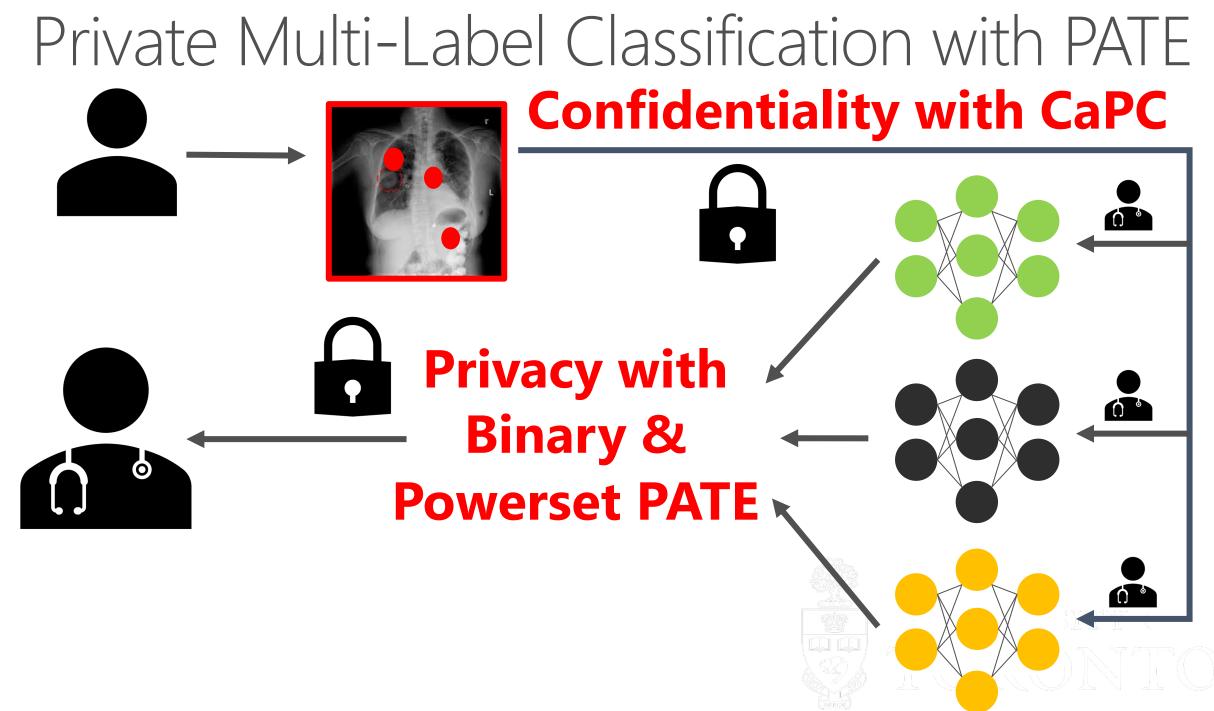
Pascal VOC, 20 labels, ResNet 50, $\varepsilon = 20$, $\delta = 1e^{-5}$

Method	ACC	BAC	AUC	MAP
Before	0.93	0.59	0.88	0.54
After	0.94	0.64	0.89	0.55

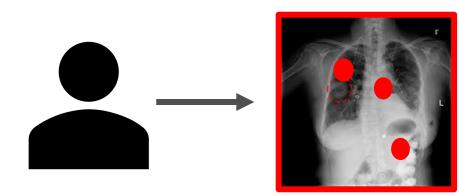
MIMIC, 11 labels, DenseNet 121, $\varepsilon = 20$, $\delta = 1e^{-6}$

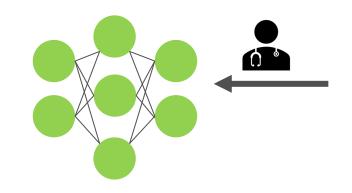
Method	ACC	BAC	AUC	MAP
Before	0.84	0.63	0.78	0.43
After	0.85	0.64	0.79	0.45

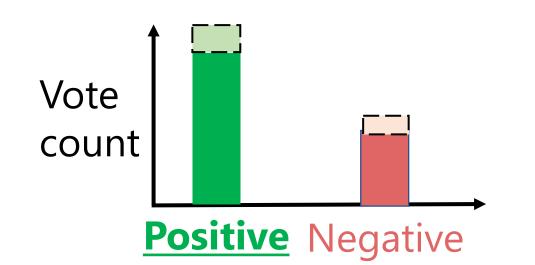




Thank you

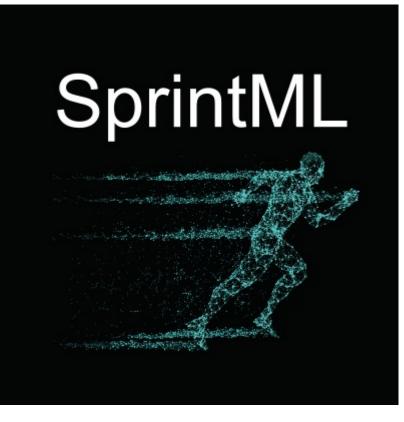






Multi-Label PATE & CaPC

Join our SprintML Lab at CISPA!



We are hiring Ph.D. students, Postdocs, and Research Interns with a research focus in one or multiple of the following areas:

- Privacy-Preserving Machine Learning
- Secure and Robust Machine Learning
- Distributed and Federated Learning
- Machine Learning Model Confidentiality
- Trustworthy Language Processing

Retraining with Multi-Label CaPC ($\epsilon = 10$)

Dataset	# of Models	State	$\mathrm{PB}\left(\varepsilon\right)$	ACC	BAC	AUC	мАР
	1	Initial	-	.97	.85	.97	.85
Pascal VOC	50	Before CAPC	-	$.93 {\pm} .02$	$.59 \pm .01$.88±.01	$.54 \pm .01$
PASCAL VUC	50	After CAPC	10	.94±.01	.62±.01	$.88 \pm .01$	$.54 \pm .01$
	50	After CAPC	20	.94±.01	.64±.01	.89±.01	$.55 {\pm} .01$
	1	Initial	-	.79	.78	.86	.72
CheXpert	50	Before CAPC	-	$.77 \pm .06$	$.66 \pm .02$	$.75 \pm .02$	$.58 \pm .02$
	50	After CAPC	20	$.76 \pm .07$.69±.01	.77±.01	.59±.01
MIMIC	1	Initial	-	.90	.74	.84	.51
	50	Before CAPC	-	$.84 \pm .07$	$.63 \pm .03$	$.78 \pm .03$	$.43 \pm .02$
	50	After CAPC	20	.85±.05	.64±.01	.79±.01	$.45 {\pm} .03$

Performance of Binary for different ϵ values

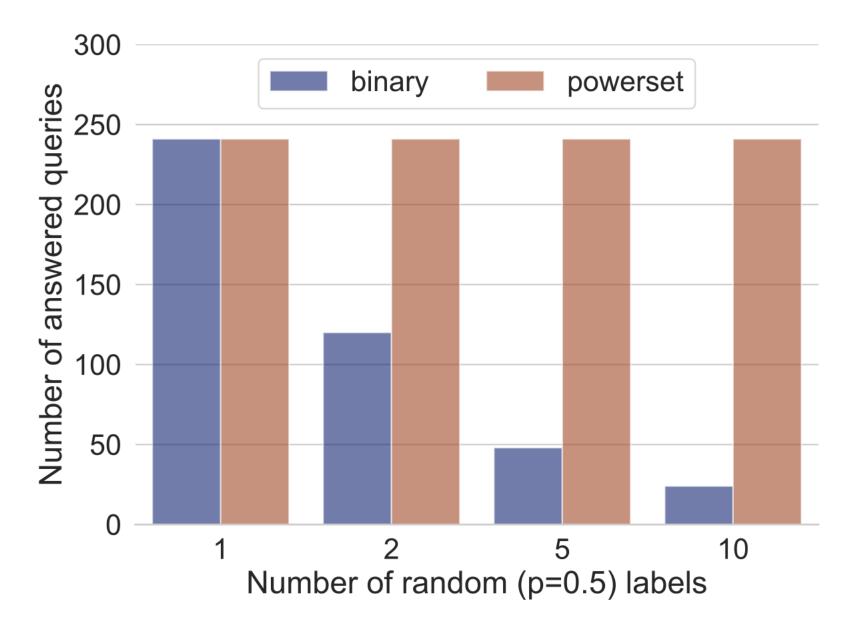
	Queries				
PB (ε)	ANSWERED	ACC	BAC	AUC	MAP
1	0	-	-	-	-
2	6	.86	.62	.62	.44
3	13	.93	.67	.67	.53
4	22	.93	.64	.64	.44
5	31	.95	.63	.63	.39
6	40	.95	.67	.67	.45
7	64	.95	.64	.64	.35
8	81	.95	.66	.66	.40
9	101	.95	.60	.60	.28
10	113	.96	.63	.63	.30
11	135	.96	.64	.64	.33
12	165	.96	.65	.65	.35
13	199	.96	.63	.63	.32
14	217	.96	.64	.64	.35
15	239	.96	.63	.63	.32
16	272	.96	.63	.63	.31
17	306	.96	.63	.63	.30
18	332	.96	.63	.63	.31
19	362	.96	.63	.63	.30
20	403	.96	.63	.63	.30

DPSGD vs PATE on the CheXpert Dataset

We compute the Area-Under-the-Curve (AUC) metric per label. Adaptive denotes the Adaptive DPSGD for multi-label classification. $\epsilon=8, \delta=10^{-4}$

Method	AT	CA	CO	ED	EF	Average
Non-private	0.84	0.80	0.87	0.90	0.91	0.87
DPSGD	0.56	0.53	0.66	0.56	0.62	0.58
Adaptive	0.75	0.73	0.84	0.79	0.79	0.78
BINARY PATE	0.78	0.75	0.84	0.76	0.81	0.79

Randomly Generated Labels



Compare Binary vs Powerset Mechanisms

Accuracy (ACC) = (TP + TN) / (P + N) Balanced Accuracy (BAC) = $\frac{1}{2}$ (TPR + TNR) Area-Under-the-Curve (AUC) = $\int_0^1 t(f) df$, t(f) = TPR / FPR Mean-Average-Precision (MAP) = TP / (TP + FP)

Method	ACC	BAC	AUC	MAP
Non-private	0.97	0.85	0.97	0.85
DPSGD	0.92	0.50	0.68	0.40
Powerset	0.94	0.58	0.70	0.29
Binary	0.94	0.62	0.85	0.57

Pascal VOC, 20 labels, ResNet 50, $\varepsilon = 20$, $\delta = 1e^{-5}$