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Single-Label: 
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Multi-Label: 
Cardiomegaly (CA) - enlarged heart
Edema (ED) - fluid trapped in a tissue
Hernia (HE) - organ bulges out

Single-Label: 
7
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Cardiomegaly (CA), 
Hernia (HE)
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Private Inference

CaPC Learning: Confidential and Private Collaborative 
Learning Choquette-Choo et al. [ICLR 2021].
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Positive Negative
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Private

Positive Negative

Cardiomegaly (CA)

Vote 
count

1 0 1

1 0 1

0 1 0

CA ED HE

Gaussian Noise 

PATE framework with DP 



Private Binary

Multi-winner election for a set of voters each with a vote per label 
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Multi-Label: Cardiomegaly and 
Hernia, no Edema
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 Powerset 
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 Powerset
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# of classes grows exponentially: 2! 
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Powerset
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1 1 0

0 1 1

1 0 11 1 1
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1 1 0

0 1 1

1 0 1

True plurality: 1 1 1
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1 1 0

0 1 1

1 0 1

Selected output:

True plurality: 1 1 1

Not in any voting
1 1 1

but collective knowledge
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Powerset
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Selected                   is one of the votings
True plurality: 1 1 1
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Uncorrelated 
Labels

CA ED HE
1 0 0

0 0 1
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0 1 0

Binary is optimal
23



24

Uncorrelated 
Labels

Noisy or Strongly 
Correlated Labels

CA ED HE
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CA ED HE
0 1 1

0 1 1

1 0 0

0 1 1
ED ⟺ HE

Binary is optimal Powerset performs better
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Pascal VOC Dataset
Avg. 2 out of 20 labels

0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
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𝑳𝟐 clipping for Binary

1 1 1

Max 2 votes
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𝑳𝟐 clipping for Binary
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2/ 3 2/ 3 2/ 3



28

𝑳𝟐 clipping for Binary All Powerset classes 
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𝑳𝟐 clipping for Binary Fewer classes for Powerset 
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Method ACC BAC AUC MAP
Non-private 0.97 0.85 0.97 0.85

DPSGD 0.92 0.50 0.68 0.40
Powerset 0.94 0.58 0.70 0.29
Binary 0.94 0.62 0.85 0.57
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Method ACC BAC AUC MAP
Before 0.93 0.59 0.88 0.54

After 0.94 0.64 0.89 0.55



33

Method ACC BAC AUC MAP
Before 0.93 0.59 0.88 0.54

After 0.94 0.64 0.89 0.55

Method ACC BAC AUC MAP
Before 0.84 0.63 0.78 0.43

After 0.85 0.64 0.79 0.45
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Confidentiality with CaPC



Privacy with 
Binary & 

Powerset PATE
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Confidentiality with CaPC



Thank you

Positive Negative

Vote 
count

Multi-Label
PATE & CaPC
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Join our SprintML Lab at CISPA!
We are hiring Ph.D. students, Postdocs, and 
Research Interns with a research focus in one 
or multiple of the following areas:

• Privacy-Preserving Machine Learning
• Secure and Robust Machine Learning
• Distributed and Federated Learning
• Machine Learning Model Confidentiality
• Trustworthy Language Processing
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Backup
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We compute the Area-Under-the-Curve (AUC) metric per label. 
Adaptive denotes the Adaptive DPSGD for multi-label classification.

𝜀 = 8, 𝛿 = 10"#
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Method ACC BAC AUC MAP
Non-private 0.97 0.85 0.97 0.85

DPSGD 0.92 0.50 0.68 0.40
Powerset 0.94 0.58 0.70 0.29
Binary 0.94 0.62 0.85 0.57


