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Introduction

• Collaborative machine learning (ML) is widely
used to enable institutions to learn better mod-
els from distributed data.

• While collaborative approaches to learning intu-
itively protect user data, they remain vulnerable
to either the server, the clients, or both, deviating
from the protocol.

• We propose the first peer-to-peer (P2P) collabo-
rative learning scheme that is secure against mali-
cious servers and robust to malicious clients.

• Our novel generic framework transforms any (com-
patible) algorithm for robust aggregation of model
updates to the setting where servers and clients can
act maliciously.

Motivation

Contributions

• Current collaborative learning approaches are vul-
nerable to both client (denoted as C in the Figure
above with data D) and server attack vectors. Our
framework tackles all of these vulnerabilities simul-
taneously.

• We provide the first protocol that operates under
the malicious threat model and is robust to mali-
cious clients and servers. We provide a simulation-
based proof of its cryptographic security.

• We design our protocol as a generic compiler that
can convert broad categories of robust aggrega-
tion algorithms to our improved security model ef-
ficiently.

Problem Setup

• The P2P collaborative learning is conducted
among a set of peers performing one of two roles:
a client (or worker) who performs learning on a lo-
cal dataset, or a server that aggregates the many
client updates.

• A peer can be assigned either of the roles. The
role of the server is performed by a subset of peers
termed the aggregation committee.

Threat Model

• We consider a malicious threat model where clients
and servers may perform arbitrary adversarial ac-
tions to interfere with the protocol.

• Malicious Clients may attempt to lower the qual-
ity of the trained model by sending distorted model
updates. They may also attempt to steal informa-
tion about the other peers’ data, i.e. break confi-
dentiality.

• Malicious Servers / Committee Members can arbi-
trarily modify model parameters and collude. For
example, they may attempt to reconstruct indi-
vidual data points from the clients’ updates, thus
breaking data confidentiality.

Robust and Actively Secure
Framework

• Our framework efficiently lifts the robust aggrega-
tion algorithms (e.g., CC) to the P2P learning set-
ting with guaranteed malicious-secure (or, actively-
secure) protocol fidelity.

• We propose a modular design that encompasses a
broad class of robust aggregation algorithms de-
signed for the single-server setting.

• A key challenge that we surmount is strengthening
security whilst maintaining the efficiency necessary
to scale to real-world scenarios. To this end, we
leverage computational subjectivity.

Framework Design

• We design a modular template to organize aggre-
gation algorithms in terms of three functions F C,
F P , and F R.

• F C : D×S×Ω→ U client-side update computa-
tion based on local data, state, and global model
parameters; accordingly, D is the space of possible
client datasets, S is the space of local states, Ω is
the space of global model parameters, and U is the
space of client updates.

• F P : U → V server-side update preprocessing
transforms each client update to a preprocessed
domain V .

• F R : V m → Ω server-side update aggregation,
which combines the preprocessed local updates
into a global model update w ∈ Ω.

Main Protocol Outline

1. The clients randomly select an aggregation com-
mittee C ⊂ {Pi}i∈[m].
Client update:
2. Each client Pi applies local computation ui ←
F C(data, st,w).
Preprocessing:
3. For each client Pi, compute vi← F P (ui).
4. Pi secret shares vi to obtain [vi] and sends one
share to each Pj ∈ C.
5. If F P is not computationally surjective, Pi uses
Distributed Zero Knowledge (DZK) to prove to the
committee C that vi is correctly computed from
some ui of Pi’s choice. Otherwise, Pi uses DZK to
prove that vi ∈ V .
6. If Domain(F R) ̸= Image(F P ), Pi uses DZK to
prove to the committee C that vi ∈ Image(F P ).
Update Aggregation:
7. All committee members Pj ∈ C input shares
[vi] for all i ∈ [n] to a |C|-party computation
protocol in order to compute w ← F R({vi}i∈[n]).
Committee members send w to all clients.

Empirical Evaluation

Computational Efficiency. The runtime per-
formance of the robust aggregation algorithms
(RSA, FLT, and CC) scales linearly with the num-
ber of parameters and peers
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Security does not impact Robustness. We
verify that the properties of the robust aggregation
algorithms hold after the required modifications.
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