Bucks for Buckets (B4B): Active Defenses Against Stealing Encoders
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Introduction

Self-supervised (SSL) models are increasingly
prevalent in machine learning (ML) with versa-
tility in downstream applications through high-
dimensional representations and unlabeled data.

ool models are vulnerable to model stealing at-
tacks where an adversary can steal an ML model
exposed via a public API with query access.

Attacks against SSL models are query efficient:
Adversary may steal a well-performing model with
much fewer queries than the number of training
data points.

Existing defenses against stealing supervised mod-
els are inadequate in the SSL setting.

Motivation

It is a costly venture to create SSL APIs:
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Contributions

We present B4B, the first active defense against en-
coder stealing that does not harm legitimate users’
downstream performance. B4B’s three building
blocks enable penalizing adversaries whose re-
turned representations cover large fractions of the
embedding space and prevent sybil attacks.

We propose a concrete instantiation ot B4B that
relies on Locallity-sensitive hashing which reduces
the quality of user representations when they oc-
cupy too many hash buckets.

We evaluate our defense using five datasets from
the computer vision domain and show that our de-
fense can successtully prevent model stealing at-
tempts without decreasing encoder utility for le-
gitimate users
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Problem Setup

Encoders transtorm complex input queries into high-
dimensional representations. SSL APIs return rep-
resentations that can turther be used to train classi-
fiers for multiple downstream tasks.
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Figure 1. Self-supervised learning API setup and the use

of representations to steal encoders.

Attackers leverage query access to the API to extract
information and train a duplicate model. Existing

defenses are inadequate for self-supervised models.

Intuition behind Our Framework

» Queries from legitimate users occupy a single re-
oion of the latent space.

- Attacker must query the entire representation
space to steal the encoder.
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Figure 2: Bucks for Buckets.

We divide the encoder latent space into buckets and
adjust the querying cost depending on the fraction
of buckets occupied by the user’s queries.
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Figure 3: B4B building blocks: (1) A coverage estimation to track the fraction of embedding space covered by the
representations returned to each user, (2) a cost function to map the coverage to a concrete penalty to prevent stealing, (3)
per-user transformations that are applied to the returned representations to prevent sybil attacks. .
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Figure 4: Coverage estimation. Figure 5: Cost function. Figure 6: Transformations.

Empirical Evaluation

Table 1:B4B effects. No harm to legitimate users. Successtully prevents model stealing attacks, including sybil attacks.

USER DEFENSE # QUERIES DATASET TYPE CIFAR10 STL10 SVHN F-MNIST

LEGIT NONE ALL TASK QUERY 90.41 2002 95.08201375.47 001 91.224011
LEGIT B4B ALL TASK QUERY 90.24:011 95.05:01 74.962013 91.7x001
ATTACKER NONE S50K IMGNET STEAL 65.2:008 64.92000 63.1x000 88.5 zoo
ATTACKER B4B S0K IMGNET STEAL 35.72x004 31.54200219.742002 70.01x0.01

SYBIL B4B 2XH0K IMGNET STEAL 39.56+00 38.50+100423.412002 77.01+00s

Conclusions

- B4B is the first active defense for self-supervised encoders that prevents
stealing without degrading legitimate user experience.

- We use local sensitive hashing to track the coverage of the latent space.

- We adjust the utility of the returned representations according to the cover-
age of the latent space to prevent stealing.

- We use per-user transformations to prevent sybil attacks.
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