Memorization in Self-Supervised Learning Improves Downstream Generalization

Motivation

Memorization is a relevant concept to understand generalization, learning behavior, and privacy risks;

Self-supervised learning (SSL) Memorization was only empirically explored;

Formal definitions for memorization from supervised learning rely on labels and can not be applied;

Contributions

- definition of memorization for SSL • Formal encoders (SSLMem): independent of SSL framework and training loss, operates on representations;
- experimentally • Practical framework for approximating **SSLMem**;
- Extensive empirical evaluation of **SSLMem** on various SSL frameworks and datasets;

Summary of Findings

I. SSL memorizes especially atypical data points;

 ≥ 0.8

Ŷ	¢	6	lę	÷
6	6	$(\mathcal{O}$	6	6
6	6	6	6	6

MNIST: class 3 and 6 for different levels of memorization (0: no memorization).

2. Highest memorized data points between different SSL frameworks align but differ significantly to highest memorized points in supervised learning;

Memorization in the SSL encoder increases different generalization downstream over downstream data distributions and tasks;

Notation

Symbol	Explanation
$\overline{\mathcal{A}}$	SSL learning algorithm
$S = \{x_i\}_{i=1}^{m}$	Training dataset
$S' = S \setminus x$	Reference dataset
$\mathbf{Aug}(x)$	Augmentation set
$f:\mathbb{R}^n\to\mathbb{R}^d$	Encoder trained on S
$g: \mathbb{R}^n \to \mathbb{R}^d$	Reference encoder trained on $S' = S \setminus \{x_j\}$
S_S	training data shared between encoders f and g
S_C	candidate set, training data for f only

Wenhao Wang*, Muhammad Ahmad Kaleem*, Adam Dziedzic*, Michael Backes, Nicolas Papernot, Franziska Boenisch

CISPA Helmholtz Center for Information Security, University of Toronto, Vector Institute

Intuition of SSLMem

- SSL frameworks optimize for *representation* alignment, i.e., two augmentations of the same data point should have close representations;
- Quantify memorization of data point x by comparing representation alignment of encoder ftrained with x and reference encoder g trained without x;
- Intuition: x is memorized more the more f's representation alignment is better than g's;
- If f's and g's representation alignment is close, xdoes not influence f's behavior significantly (no memorization);

Formalizing SSLMem

Definition *alignment loss* to quantify representation alignment for metric d, e.g., the ℓ_2 distance:

$$\mathbf{L}_{\text{align}}(f, x) = \mathbb{E}_{\substack{x', x'' \sim \text{Aug}(x)}} [d\left(f(x'), f(x'')\right)]$$

Our Definition of Memorization Score:

$$\begin{aligned} \mathcal{H}_{\text{align}}(f, x, S) &= \underset{f \sim \mathcal{A}(S)}{\mathbb{E}} \mathcal{L}_{\text{align}}(f, x) \\ \text{SSLMem}(g, f, x, S', S) &= \mathcal{H}_{\text{align}}(g, x, S') - \mathcal{H}_{\text{align}}(f, x, S) \end{aligned}$$

Encoder alignment loss vs. SSL memorization.

Insights into SSLMem

We train an MAE SSL encoder based on VIT-tiny using CIFAR10.

Memorization is not just an effect of increasing/ decreasing accuracy: while loss and accuracy stagnate after a few hundred epochs, memorization increases.

The encoders exhibit memorization indicated by significantly higher scores for S_C (candidates used to train only f) compared to S_S (shared training) set for f and g).

Retained Points	CIFAR10	CIFAR100	STL10
25k (full encoder)	$63.3\% \pm 0.92\%$	$61.1\% \pm 1.14\%$	$61.6\% \pm 0.83\%$
24k (most memorized)	$64.4\%{\pm}1.03\%$	$61.3{\pm}0.98\%$	$61.7{\pm}1.18\%$
22k (most memorized)	$63.8\%{\pm}0.76\%$	$61.8{\pm}1.24\%$	$62.4{\pm}1.05\%$
20k (most memorized)	$63.2\% \pm 1.07\%$	$60.8\% \pm 0.68\%$	$61.1 \pm 1.05\%$
16k (most memorized)	$61.8\% \pm 1.11\%$	$58.4\% \pm 0.91\%$	$59.9 \pm 0.89\%$
$12k \pmod{\text{memorized}}$	$59.7\% \pm 0.74\%$	$55.6\% \pm 1.32\%$	$55.2 \pm 1.24\%$

CoreSet Selection: Training only on the most memorized data points yields same performance.

${\mathcal E}$	SSLMem	Acc. $(\%)$
∞	0.307 ± 0.013	$69.40\% \pm 1.12\%$
20	0.182 ± 0.009	$54.22\% \pm 0.98\%$
8	0.107 ± 0.012	$33.66\% \pm 1.76\%$

Effect of differential privacy.

0.650

0.600

ر ^{0.575} ج 근 0.550

> 0.525 0.500

> 0.475

Removal of memorized data points harms accuracy over all downstream tasks more than the removal of random data points.

mIoU Acc. (%) Evaluating the effect of memorization on a semantic segmentation downstream task.

• We introduce **SSLMem**, a formal definition for memorization in self-supervised learning.

UNIVERSITY OF VECTOR TORONTO INSTITUTE

Evaluation of SSLMem

Limiting memorization harms downstream accuracy.

	Without removing	Removing 10000		Removing 20000	
		Memorized	Random	Memorized	Random
	45.4	44.8	45.1	43.8	44.4
5)	$69.89\% \pm 0.84\%$	$68.33\% \pm 0.92\%$	$68.91\% \pm 0.77\%$	$66.51\% \pm 1.03\%$	$67.58\% \pm 0.82\%$

Conclusions

• SSLMem generalizes across different encoder architectures and SSL training frameworks, and is independent of any downstream task and label.

• We show that encoders require memorization to generalize well to downstream tasks.