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Abstract

Large language models (LLMs) are excellent
few-shot learners. They can perform a wide va-
riety of tasks purely based on natural language
prompts provided to them. These prompts con-
tain data of a specific downstream task—often
the private dataset of a party, e.g., a company
that wants to leverage the LLM on their pur-
poses. We show that deploying prompted mod-
els presents a significant privacy risk for the
data used within the prompt by instantiating
a highly effective membership inference at-
tack. We also observe that the privacy risk
of prompted models exceeds fine-tuned mod-
els at the same utility levels. After identify-
ing the model’s sensitivity to their prompts—in
form of a significantly higher prediction con-
fidence on the prompted data—as a cause for
the increased risk, we propose ensembling as a
mitigation strategy. By aggregating over mul-
tiple different versions of a prompted model,
membership inference risk can be decreased.

1 Introduction

Large language models (LLMs) exhibit strong ca-
pabilities for few-shot learning. When provided
with a natural language prompt in the form of a
small number of examples for the specific context,
the models can perform a myriad of natural lan-
guage downstream tasks without modifications of
their parameters [3, 33]. Prompting is more param-
eter and data-efficient than fine-tuning. First, given
a large number of parameters in LLMs, prompting
boosts efficiency in downstream tasks [34] without
any adaptation of model parameters. In contrast,
fine-tuning requires retraining a significant frac-
tion of parameters. Second, it has been shown
that prompting can leverage training data more ef-
ficiently than standard fine-tuning with a prompt
being worth ∼100 data points [35].

The effectiveness of prompts is possible since
the prompt data exhibit a significant effect on the
LLMs’ behavior [19, 37]. This naturally raises

the question of privacy risks. Understanding pri-
vacy risks of prompting is of high importance since,
in contrast to the large public corpora used to pre-
train the LLMs, the data used for prompting usually
stems from a smaller private downstream dataset.
Prior work has extensively studied the topic of
memorization and privacy in LLMs [6, 7, 45]. Yet,
the considerations were limited to the data used
for pre-training the LLMs [6, 45] or to fine-tune
the model parameters [23, 44, 46]. In contrast,
we analyze how much privacy of the data used
for prompting leaks from the deployed prompted
LLM. With our results, we are the first to show that
prompted LLMs exhibit a high risk to disclose the
membership of their private prompt data.

In our study, we focus on text generation mod-
els [32, 33] prompted with a proper template for
any given downstream classification task. In this
setup, we study privacy leakage through the lense
of membership inference attacks (MIA) [4, 38]—
currently the most widely applied approach for esti-
mating practical privacy leakage. With access only
to the probability vector output by the prompted
LLM for a given input, we instantiate the MIA
to determine whether this input was part of the
prompt. Our results suggest that data points used
within the prompt are highly vulnerable to MIAs.
Furthermore, in a controlled environment, we em-
pirically evaluate the MIA-risk of prompting to the
risk of fine-tuning with private data. We find that
prompted models are more than five times more
vulnerable than fine-tuned models.

The severe vulnerability of the private prompt
data and the fact that finding the high-performing
prompts for a given downstream task requires sig-
nificant human efforts and computing resourses
[51] demand the design of protection methods.
Based on the observation that the prompted LLMs
exhibit a significant higher prediction confidence
on their prompted data—leading to the great suc-
cess of MIA—we propose an effective defense: We



show that by ensembling over different prompted
versions of an LLM, we can align the prediction
confidence on prompt data (members), and other
data (non-members) while achieving the same high
prediction accuracy. Obtaining such an ensemble
of prompted models is efficient since multiple well-
performing prompts is already the by-products of
our prompt-tuning and does not require additional
steps. We evaluate two concrete instantiations of
prompt ensembling, namely Avg-Ens and Vote-
Ens and quantify their effect on the risk of MIAs.
We show that our ensembling effectively reduce
the success of MIA to close to random guessing.
Thereby, the privacy of the prompted data can be
protected.

In summary, we make the following contribu-
tions:

• We instantiate the first MIA on prompted
LLMs and show that we can effectively infer
the membership of the prompted data points
with high success.

• We empirically compare the MIA risk of
prompted and fine-tuned models in a con-
trolled experimental environment and observe
that the privacy risk of prompting significantly
outperforms the one of fine-tuning.

• We demonstrate how to mitigate the privacy
leakage we observed with prompt ensembling
to a MIA-success rate of close to random
guessing.

2 Background and Related Work

2.1 Language Model Prompting

The success of LLMs such as the different ver-
sions of GPT [3, 32, 33] and their exceptional few-
shot learning capacities gave rise to prompt-based
learning. Without having to adapt any parame-
ters, prompt-based learning leverages the capacities
of LLMs and achieves similar downstream perfor-
mance as full model fine-tuning [22, 25]. There-
fore, it suffices to provide the model with a task-
specific context in the form of a few examples, also
called demonstrations. The prompt-based approach
does improve computational and storage complex-
ity over fine-tuning since no parameters of the un-
derlying LLMs need to be updated and instead of
having to save a fully fine-tuned model, only the re-
quired prompt has to be recorded. Prompts can be
designed either manually by a human expert, or by

an automated process [14, 15, 24, 37]. Our demon-
strations come from the actual discrete vocabulary
and we consider privacy leakage of the underlying
data points – sentences from the downstream tasks
used for prompting.

2.2 Memorization and Privacy Leakage in
LLMs

LLMs are shown to memorize their training data
which enables adversaries to extract this data when
interacting with the model [5, 16, 20, 26, 42, 45].
It has, for example, been shown that GPT2 repro-
duces large passages with up to 1000 words of its
original training data at inference time. Addition-
ally, privacy risks through memorization in fine-
tuning have been observed by Mireshghallah et
al. in [27]. The only prior work around privacy
leakage in prompt-based learning has used prompt-
ing to extract knowledge from LLMs and their
underlying large (and often public) training cor-
pora [10, 19, 30]. In our setup, we do not target
the privacy of the LLM’s training data—neither the
original large corpora nor the data used to adapt
the model through fine-tuning. Instead, we are the
first to study the privacy of data used to prompt an
LLM to perform particular downstream task.

2.3 Membership Inference Attacks
When performing a membership inference attack
(MIA) [4, 38], an adversary aims to determine
whether a particular data point was used to train
a given machine learning model. The adversary
usually has access only to the model’s prediction
outputs. Membership inference attacks have been
successful on a broad variety of machine learning
models and domains, especially the vision [38, 4]
and language domain [36, 40, 7]. While a few prior
works employ MIA to quantify memorization in
LLMs [7, 29, 27], they target the original large cor-
pus training data or data used for fine-tuning the
parameters of the models. In contrast to them, we
do not adapt the model parameters but freeze the
entire LLM and design a prompt based on a small
and private downstream dataset. We evaluate MIA
risk for the data points used within the prompt.

2.4 Defending Against Membership Inference
Existing defense mechanisms against MIA can be
divided into two main categories: (i) empirical mea-
sures to reduce the adversary’s attack success by
either reducing model overfitting [8] or perturbing
model outputs [28, 18] and (ii) measures that rely
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...

... →
...

. . . 0.01 . . . 0.9 . . . Ỹn → [0.01, 0.9]

Template

p1: “John Doe has cancer”; “sick”

Prompted Target Model

Figure 1: Setup for Prompting and MIA. We prompt the LLM with different prompts (same template) for a
downstream task. The LLM returns per-token probabilities for the next token in the sequence. The adversary
has query access to the prompted LLM and obtains prediction probabilities for each possible target class of the
downstream task.

on providing rigorous privacy guarantees according
to Differential Privacy (DP) [13]. These measure,
for example, apply a DP stochastic gradient descent
(DP-SGD) [1] while training a machine learning
model. However, in practice, DP significantly de-
grades performance of generative models [2] when
not trained under very carefully chosen hyperpa-
rameters [23]. Therefore, none of the popular state-
of-the-art LLMs is trained with DP. As a conse-
quence, we focus our work on the first category
of defenses and propose ensembling multiple pro-
moted models. The only prior work using ensem-
bles to defend against MIA is limited to small ML
models for vision and tabular datasets, and requires
a pre-processing over the entire training data at in-
ference time to determine which of the ensemble
models’ training data did not contain the present
data point [41]. We instead query all prompted
models without additional pre-processing.

3 Method

3.1 Prompting for Downstream Classification

We focus on prompting pre-trained LLMs with the
objective to perform a downstream classification
task. We denote the prompted model as Lprompt.
Our prompts consist of tuples of demonstration
sentences from the respective downstream task as
prompt data, provided in a consistent template.
When applied to a specific input xi, Lprompt pre-
dicts an M -dimensional probability vector ỹi, with
M being the size of the vocabulary, where each
component corresponds to the probability that the
Lprompt assigns to the respective token for being
the next token in the sequence xi. Note that the
output probabilities over all possible tokens are usu-
ally normalized such that

∑
m∈M ỹi,m = 1. Since

we provide the model with demonstrations to solve
a downstream classification task, the index with
the highest values in ỹi should correspond to the
token that represents the class label of the xi. For
example on the input xi ="The movie was great.",
the highest probability should be for the token "pos-
itive", because this is the correct class label. Given
that the model is supposed to perform classifica-
tion for a given downstream task, we assume that
when querying Lprompt with xi, not the entire ỹi
has to be returned. Instead, we are only interested
in a subset of token-probabilities, namely for those
tokens that correspond to classes in the respective
downstream dataset. We denote the reduced proba-
bility vector as yi. Note that since yi only consists
of a subset of the token probabilities from ỹi, the
probabilities in yi are unnormalized, i.e., they do
not necessarily add up to one,

∑
m∈M yi,m ≤ 1.

We depict our setup in Figure 1.

3.2 MIA Setup and Threat Model

For our MIA, we assume an adversary with black-
box access to the prompted model Lprompt. This
adversary can query n text sequences (x1, · · · , xn)
to Lprompt and obtains the output probability
vectors (y1, · · · , yn). Following a line of prior
MIAs [17, 43], we base our attack on the model’s
output probability at the token yi,l that corresponds
to the correct target class label l.

3.3 Prompt Ensembling

To mitigate the privacy risk, as exposed by prompt
membership, we propose to aggregate the predic-
tion probability vectors over multiple independent
prompted models into an ensemble prediction, as
shown in Figure 2. We first tune K prompted mod-
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Figure 2: Ensemble of Prompted Models. We ensem-
ble multiple prompted models with disjoint data and the
same template. The final prediction is an aggregate of
outputs from each prompted model.

els L(1)
prompt, L

(2)
prompt, . . . , L

(K)
prompt. These K mod-

els are prompted with disjoint training data. We
then introduce two standard techniques to ensem-
ble these prompted models [19, 22] and refer to
them as Avg-Ens and Vote-Ens.

In Avg-Ens, we average the raw probabil-
ity vectors of each of our K prompted models
L
(1)
prompt, L

(2)
prompt, . . . , L

(K)
prompt. Let y

(k)
i be the

output of our kth prompted model on input xi. The
output of the ensemble L

Avg-Ens
prompt on input xi is ob-

tained as follows

L
Avg-Ens
prompt (xi) :=

1

K

K∑
k=1

L
(k)
prompt(xi). (1)

For Vote-Ens, we rely on a majority vote of all
the prompted models. Therefore, we first obtain a
single model’s prediction on input xi as the token
(class) from vocabulary V with the highest logit
value as argmax(L

(k)
prompt(xi)). Let nv denote the

number of prompted models that predict token v.
Then, we return the token predicted by most models
as

LVote-Ens
prompt (xi) := argmax

v∈V
(nv) . (2)

We do not evaluate the ensembling methods from
Jiang et al. [19] that rely on (i) using the prompted
model with the highest test accuracy as the output
of the ensemble, or (ii) using a weighted average
over the prompted models. While (i) might yield
utility improvements as shown in [19], it does not
provide any privacy protection to the prompted
model whose output is returned. This is because
the prediction of the ensemble still depends solely
on a single model and thereby puts the privacy of
that model at risk. Since [19] shows for (ii) that the
weight concentrates on one single prompted model,
the same impact on this model’s privacy holds.

Ntrain Ntest # Classes minacc maxacc

agnews 12000 7600 4 0.65 0.83
cb 250 56 3 0.60 0.73
sst2 6920 1821 2 0.78 0.88
trec 5452 500 6 0.40 0.59

Table 1: Evaluation Datasets. Summary of the datasets
and utility overview. We depict the number of training
(Ntrain) and test data points (Ntest), and the number of
classes (# Classes) in the task. Additionally, among
the 50 selected best prompted LLMs, we report the
span of their respective validation accuracies between
the worst performing minacc and the best performing
maxacc. The validation accuracy is used to find the
best 50 prompted models among the 1000 generated
promoted models.

MIA on Ensembled Models. We also perform
MIA on the ensembled models to study how ensem-
bling mitigates the privacy risks. For Avg-Ens, we
rely on the averaged output vector of the ensemble
y

Avg-Ens
i = L

Avg-Ens
prompt (xi), and extract the respective

confidence value at the correct target class yAvg-Ens
i,l .

For Vote-Ens, we count the number of prompted
models that predict the target class l and divide
by the total number of models in the ensemble as
nl
K . Our empirical evaluation on the privacy risk
mitigation through ensembled prompts is presented
in Section 4.4.

4 Experimental Evaluation

We experimentally study the MIA success on
prompted LLMs and show that the prompted data
exhibits a high vulnerability to MIAs. Furthermore,
we provide a comparison to the privacy risk of fine-
tuning. We find that, at the same downstream accu-
racy, the privacy risk of prompt data in a prompted
LLM surpasses the one of data used for fine-tuning.
Finally, we demonstrate how ensembling the pre-
diction of multiple prompted LLMs can effectively
reduce the MIA risk close to random guessing.

4.1 Experimental Setup

We prompt GPT2 [3]1 to solve four standard
downstream text classification tasks, namely ag-
news [48], cb [11], sst2 [39] and rte [9]. We doc-
ument details of the datasets in Table 1. Note that
20% of the training data sets serve us as separate
validation sets.

1If not specified differently, we use GPT2-xl taken from
HuggingFace (1.5 billion parameters).
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Figure 3: Prediction Probability at Target Class (sst2).
We plot output prediction probability for the target class
for member and non-member data points of the prompt
in the prompted LLM. We find that the LLMs outputs
for the prompt’s member data is significantly higher
than for non-member data points.

Tuning. Our procedures for prompt tuning follow
Zhao et al. [49] unless otherwise specified. Unlike
them, we also return the probabilities for class la-
bels whose corresponding tokens do not fall under
the top 100 tokens. This enables us to perform our
MIA in a unified way over all model outputs.

Since the performance of prompted models is
known to suffer from instability [12, 47], we
prompt the model 1000 times with different 4-shot
data from the downstream dataset. We then keep
the 50 best-performing prompts with disjoint data
based on validation accuracy.2 The range of vali-
dation accuracies of the best selected 50 prompted
models is reported in Table 1.

MIA. To evaluate our MIAs, we consider the data
points used within the prompt of a model as mem-
bers and all remaining training data points from the
respective dataset as non-members. This skewed
distribution between members and non-members
corresponds to a realistic scenario where only a
small proportion of the candidate data targeted by
the adversary are members [17]. If not stated other-
wise, we perform MIA on the unnormalized prob-
ability outputs of the prompted LLMs at the data
point’s correct target class. To quantify the success
of our attack, we report the AUC score as well as
the true-positive rate (TPR) at low false-positive
rates (FPRs). A successful MIA should have a high
AUC score as well as a high TPR at low FPRs.

2This type of prompt engineering corresponds to choosing
the model with the best hyperparameters in standard training
or fine-tuning.

4.2 Success of Membership Inference Attack

We first analyze the probability output by the
prompted LLM for the correct target class between
member and non-member data points. Figure 3
shows for the sst2 dataset that the prediction out-
puts for non-members are overall lower than for
members. Similar results can be observed on all
evaluation datasets, see Figure 9 in Appendix B.

This difference leads to a high MIA risk for the
prompted data points as we show in Table 2 and
Figure 4. For example, on the sst2 dataset, on an
FPR of 1e−3, we observe a TPR of 0.137±0.187,
and an average AUC of 0.72. Note that the cur-
rent most powerful MIA for supervised classifica-
tion [4] obtains the same high AUC (0.72) score
on the CIFAR10 dataset only by fully training 256
additional shadow models—a significant computa-
tional overhead we do not face.

Membership Risk is Higher on Smaller Models.
We evaluate the impact of underlying LLMs’ size
on the vulnerability to MIAs against their prompted
data. In this comparison, we focus on GPT2-base
vs GPT2-xl. GPT2-base has 117M parameters,
while GPT2-xl has 1.5B. For a fair comparison
between the different models’ vulnerability, we
control the downstream performance of two mod-
els. Therefore, for GPT2-xl, we again generate
1000 prompted models. Among those, we keep
the 50 prompts that lead to a performance close to
the validation accuracy of the best prompted GPT2-
base. More precisely, we choose the 50 prompts
for GPT2-xl that have a validation accuracy in the
range of the 50 best models of GPT2-base. Figure 5
depicts the membership risk of prompted models
of different sizes by depicting the TPRs at a FPR of
0.001. We find that GPT2-base consistently yields
higher TPRs (i.e., higher membership risk) than
GPT2-xl across different datasets. We hypothesize
that this disparate vulnerability is caused by larger
models’ better generalization capacity. Larger mod-
els, when prompted with a few examples, due to
their better generalization, have a smaller differ-
ence in output distribution between member and
non-member data points.

Normalizing Prediction Probabilities. As we
detail in Section 3.1, the prediction probabilities
of the prompted model do not sum up to one since
they are a only a small subset of all possible output
tokens (whose total prediction probability sums up
to one). We evaluate how normalizing the model’s
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Figure 4: MIA risk over all Datasets. We depict the AUC-ROC curves over all datasets. The red dashed line
represents the MIA success of random guessing. Each gray line corresponds to a prompted model with its four
member data points. Due to the small number of member data points (4), our resulting TPRs can only be 0% 25%,
50%, or 100% which leads to the step-shape of the gray curves. The reported average AUC-score is calculated as an
average over the individual prompted models (gray lines)’ AUC score. Additionally, for visualization purposes,
we average the gray lines over all prompted models and depict the average as the blue line. We use 50 prompted
models in this experiment.

FPR=1e−3 FPR=1e−2 FPR=1e−1
Prompts Fine-tuning Prompts Fine-tuning Prompts Fine-tuning

agnews 0.222± 0.212 0.001± 0.001 0.433± 0.281 0.011± 0.005 0.661± 0.253 0.105± 0.010
cb 0.272± 0.204 0.051± 0.071 0.382± 0.236 0.111± 0.120 0.632± 0.212 0.325± 0.181
sst2 0.137± 0.187 0.002± 0.003 0.225± 0.206 0.018± 0.009 0.402± 0.297 0.167± 0.0312
trec 0.019± 0.067 0.003± 0.012 0.049± 0.091 0.023± 0.038 0.221± 0.201 0.258± 0.102

Table 2: TPR at at Different FPRs for Prompts and Fine-Tuning. We report the TPR of our MIA at different low
FPRs. The large standard deviation results from the small number of member data points (4). We only consider
FPRs down to 1e−3 which is larger than in [4] which considers FPRs down to 1e−5. This is because we operate on
much smaller datasets where we cannot obtain such small fractions.

output probabilities over all possible target classes
in the downstream task influences the risk of MIA.
We depict our results in Figure 17 in Appendix B.
The evaluation does not yield a consistent trend re-
garding the overall AUC among the datasets: while
for argnews and trec the average AUC is similar
with and without normalization, for cb and sst2, the
raw outputs yield higher AUC. These results sug-
gest that attackers can also perform successful MIA
when the prediction outputs are processed in dif-
ferent ways—as it can happen when the prompted
models are deployed behind some API.

4.3 Prompting Leaks more Privacy than
Fine-Tuning

In this section, we compare the privacy leakage of
prompting with fine-tuning.

Fine-Tuning Setup. Over all our experiments,
we fine-tune only the last layer of GPT2 and a
classification head. We fine-tune the model for 500
epochs, and use the checkpoint with the highest
validation accuracy during tuning. For a controlled
comparison between fine-tuning and prompting,
our fine-tuned model’s validation accuracy should
roughly match the one of our prompted models.

Therefore, we first identify the number of data

points needed for each downstream dataset to yield
comparable validation accuracy.3 We run 100 fine
tuning runs for each combination of the number
of training data points (4, 8, 32, 64, 128, 256) and
learning rates (1e−4, 1e−5, 1e−6). The number of
data points needed and the corresponding learning
rates are detailed in the table below:

Dataset #Data Points Learning Rate Acc.

agnews 512 1e− 5 0.74
cb 16 1e− 4 0.68
sst2 5536 1e− 5 0.74
trec 32 1e− 4 0.52

Table 3: Learning Parameters for Fine-Tuning. We
present the number of data points used for fine-tuning,
the learning rates, and the resulting validation accuracies
of our fine-tuning for all dataset.

Note that for sst2, we were not able to meet the
prompted models’ validation accuracy (Table 1)
even using the whole training dataset. Therefore,
we compare with weaker prompts that yield accu-
racy between 0.72 and 0.76—instead of our 50 best
selected ones.

3Fine-tuning usually requires more data points than
prompting [21].
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Figure 5: Impact of Model Size on Membership Risk.
We report the TPR at FPR 1e − 3 for GPT2-base and
GPT2-xl (117M vs 1.5B parameters). For fair compari-
son, we tune 1000 prompts for both architectures, keep
the best 50 for GPT2-base, and for GPT2-xl, we keep
the 50 prompts that yield validation accuracy closest to
the one of GPT2-base. We observe that larger models
leak less private information about their prompts. All
results are obtained on the sst2 dataset.

meanacc Avg-Ens Vote-Ens

agnews 0.734 0.822 0.794
cb 0.625 0.696 0.696
sst2 0.854 0.904 0.908
trec 0.406 0.520 0.500

Table 4: Test Accuracy of Ensembles. We depict the
validation accuracies of our initial prompted models
(mean over all 50 models) and the validation accuracies
of our ensembling methods Avg-Ens and Vote-Ens.

MIA Evaluation Setup. Due to the different
training set size in prompting and fine-tuning, for
a fair comparison, we evaluate MIA for fine-tuned
models in two ways: (1) Following the setup for
prompted models we select a different 4-tuple of
members and evaluate against all the non-members
from the validation set. This procedure is repeated
five times and we report the average over all re-
sulting curves ROC curves and the average AUC.
(2) Following the standard setup for MIA [38] ,
we evaluate all the members together against the
non-members and present the resulting ROC curve
and AUC score.

Results. We present the MIA of fine-tuned mod-
els in Table 2 and Table 6. Our findings highlight
that prompting yields higher privacy risks than fine-
tuning under similar downstream performance. For
example, at an FPR of 1e − 3, the average TPR
for prompting is at least five times higher than for
fine-tuning across all datasets.
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Figure 6: Privacy Leakage in Fine-Tuning vs.
Prompting (sst2). We plot the membership risk of our
MIA on prompted and fine-tuned models given similar
downstream performance. For fine-tuning, we evaluate
MIA risk in two different ways to avoid the influence
of different training set size. The red dashed line repre-
sents the MIA success of random guessing. The results
show that prompts are much more vulnerable to MIA
than fine-tuning. Results of more datasets can be found
in Figure 16.

4.4 Ensembling Mitigates Privacy Risks

Finally, we experimentally evaluate the impact of
our two ensembling approaches on the member-
ship risk. We report performance of our ensembles
on the test data in Table 4 and observe that both
approaches perform equally well.

To study the impact on privacy risk, we first ana-
lyze the distribution of member and non-member
data points’ probability at the target class for Avg-
Ens. Figure 11 in Appendix B highlights that
through ensembling, the distributions for member
and non-member probabilities become much more
similar. This also reflects in reduced membership
risk as we depict in Figure 7. We find that for both
methods, the attack curve after ensembling is close
to random guessing (red line) across all datasets.
Similar results are obtained with Vote-Ens as we
show in Figure 13 and Figure 14 in Appendix B.

Finally, we evaluate the influence of the number
of prompted model in the ensemble on the resulting
membership risk. Figure 8 highlights that with an
increasing number of prompted models in the en-
semble, privacy risk decreases. This effect results
from the fact that averaging over more models gen-
erally implies smaller influence of one particular
model. However, there is a trade-off between in-
creased inference times and the decreased privacy
costs of using larger ensembles. Our Figure 18 in
Appendix B suggest that using as little as 16 teach-
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Figure 7: Defense Method via Ensembling. We depict the AUC-ROC curves over 4 datasets for our two ensembling
defense methods (average, Avg-Ens, and vote ensembles, Vote-Ens) and compare it with the attack against the
undefended model (blue solid line). The red dashed line represents random guessing. We find that ensembling
effectively mitigates the threats of MIAs.
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Figure 8: MIA Risk vs Number of Models in an En-
semble (sst2). We plot the membership risk in form of
the AUC score of MIA while we vary the number of
teachers in ensembling. Results of other datasets can
be found in Figure 18. We observe that with more data
used for ensembling, the lower risk of MIA (in terms of
AUC and its variance).

ers could reduce the average MIA for all datasets
below 0.55, i.e., close to random guessing.

5 Conclusions

We are the first to show that prompted LLMs ex-
hibit a high risk to disclose the membership of their
private prompt data. To determine the membership
of a data point, it is sufficient for an attacker to
analyze the model’s prediction confidence at the
target class. When comparing the privacy risk of
prompted models with standard fine-tuning, we ob-
serve that prompts exhibit a higher privacy leakage
than fine-tuning. However, there are many advan-
tages of prompts over fine-tuning. For example, in-
stead of storing multiple versions of the whole fine-
tuned model per downstream task, the underlying
LLMs stay intact while only the prompt changes
to implement different tasks. Thus, to mitigate
privacy risks for prompts, we propose ensembling

over multiple prompted models. We experimentally
validate that this approach reduces the membership
risk of the prompt data. An interesting observa-
tion is that privacy leakage also decreases with the
increasing number of language model parameters.
This suggests a general trend that the prompt data
become less vulnerable to privacy risks with a bet-
ter generalization of the models.

Limitations

While our ensembling approach empirically miti-
gates the risk of MIAs against prompted LLMs, we
acknowledge that the approach does not provide
rigorous privacy guarantees. Future effort should
be put into extending our approach to implement,
for example, differential privacy [13].

Furthermore, we acknowledge that our ensem-
bling approach creates computational overhead
since inference needs to be run with multiple
prompts instead of a single one. This disadvan-
tage can be reduced by running inference over all
the prompts in a batch.

In this work, we solely consider discrete prompts
due to their popular usage. There exist also soft
prompts [31, 50] that are optimized sequences of
continuous task-specific input vectors. They are
not tied to embeddings from the vocabulary. The
privacy leakage of soft prompts and designing po-
tential defenses will be addressed in our future
work.

Finally, due to the cost associated with access
to GPT-3, we limit our empirical evaluations to
GPT-2 which is available as an open-source model.
To reduce potential biases that might arise through
this limitation, we evaluated on different versions
of GPT-2, including GPT2-xl, which has >1.5B
parameters.



References
[1] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan,

I. Mironov, K. Talwar, and L. Zhang. Deep learning
with differential privacy. In Proceedings of the 2016
ACM SIGSAC conference on computer and commu-
nications security, pages 308–318, 2016.

[2] R. Anil, B. Ghazi, V. Gupta, R. Kumar, and P. Manu-
rangsi. Large-scale differentially private bert. arXiv
preprint arXiv:2108.01624, 2021.

[3] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Ka-
plan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sas-
try, A. Askell, et al. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901, 2020.

[4] N. Carlini, S. Chien, M. Nasr, S. Song, A. Terzis, and
F. Tramer. Membership inference attacks from first
principles. In 2022 IEEE Symposium on Security and
Privacy (SP), pages 1897–1914. IEEE, 2022.

[5] N. Carlini, D. Ippolito, M. Jagielski, K. Lee,
F. Tramer, and C. Zhang. Quantifying memoriza-
tion across neural language models. arXiv preprint
arXiv:2202.07646, 2022.

[6] N. Carlini, C. Liu, Ú. Erlingsson, J. Kos, and D. Song.
The secret sharer: Evaluating and testing unintended
memorization in neural networks. In USENIX Secu-
rity Symposium, volume 267, 2019.

[7] N. Carlini, F. Tramer, E. Wallace, M. Jagielski,
A. Herbert-Voss, K. Lee, A. Roberts, T. Brown,
D. Song, U. Erlingsson, et al. Extracting training
data from large language models. In 30th USENIX
Security Symposium (USENIX Security 21), pages
2633–2650, 2021.

[8] D. Chen, N. Yu, and M. Fritz. Relaxloss: Defending
membership inference attacks without losing utility.
In International Conference on Learning Representa-
tions, 2022.

[9] I. Dagan, O. Glickman, and B. Magnini. The pascal
recognising textual entailment challenge. In Machine
Learning Challenges. Evaluating Predictive Uncer-
tainty, Visual Object Classification, and Recognising
Tectual Entailment: First PASCAL Machine Learn-
ing Challenges Workshop, MLCW 2005, Southamp-
ton, UK, April 11-13, 2005, Revised Selected Papers,
pages 177–190. Springer, 2006.

[10] J. Davison, J. Feldman, and A. M. Rush. Com-
monsense knowledge mining from pretrained models.
In Proceedings of the 2019 conference on empiri-
cal methods in natural language processing and the
9th international joint conference on natural lan-
guage processing (EMNLP-IJCNLP), pages 1173–
1178, 2019.

[11] M.-C. De Marneffe, M. Simons, and J. Tonhauser.
The commitmentbank: Investigating projection in
naturally occurring discourse. In proceedings of Sinn
und Bedeutung, volume 23, pages 107–124, 2019.

[12] J. Dodge, G. Ilharco, R. Schwartz, A. Farhadi,
H. Hajishirzi, and N. Smith. Fine-tuning pretrained
language models: Weight initializations, data orders,
and early stopping. arXiv preprint arXiv:2002.06305,
2020.

[13] C. Dwork. Differential privacy. In Automata, Lan-
guages and Programming: 33rd International Collo-
quium, ICALP 2006, Venice, Italy, July 10-14, 2006,
Proceedings, Part II 33, pages 1–12. Springer, 2006.

[14] T. Gao, A. Fisch, and D. Chen. Making pre-trained
language models better few-shot learners. arXiv
preprint arXiv:2012.15723, 2020.

[15] H. Guo, B. Tan, Z. Liu, E. Xing, and Z. Hu. Effi-
cient (soft) q-learning for text generation with limited
good data. In Findings of the Association for Com-
putational Linguistics: EMNLP 2022, pages 6969–
6991, 2022.

[16] D. Ippolito, F. Tramèr, M. Nasr, C. Zhang, M. Jagiel-
ski, K. Lee, C. A. Choquette-Choo, and N. Carlini.
Preventing verbatim memorization in language mod-
els gives a false sense of privacy. arXiv preprint
arXiv:2210.17546, 2022.

[17] B. Jayaraman, L. Wang, K. Knipmeyer, Q. Gu, and
D. Evans. Revisiting membership inference under
realistic assumptions. Proceedings on Privacy En-
hancing Technologies, 2021(2), 2021.

[18] J. Jia, A. Salem, M. Backes, Y. Zhang, and N. Z.
Gong. Memguard: Defending against black-box
membership inference attacks via adversarial exam-
ples. In Proceedings of the 2019 ACM SIGSAC con-
ference on computer and communications security,
pages 259–274, 2019.

[19] Z. Jiang, F. F. Xu, J. Araki, and G. Neubig. How
can we know what language models know? Transac-
tions of the Association for Computational Linguis-
tics, 8:423–438, 2020.

[20] E. Kharitonov, M. Baroni, and D. Hupkes. How bpe
affects memorization in transformers. arXiv preprint
arXiv:2110.02782, 2021.

[21] T. Le Scao and A. M. Rush. How many data points
is a prompt worth? In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 2627–2636, 2021.

[22] B. Lester, R. Al-Rfou, and N. Constant. The power
of scale for parameter-efficient prompt tuning. In
Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, Nov. 2021.

[23] X. Li, F. Tramer, P. Liang, and T. Hashimoto. Large
language models can be strong differentially private
learners. In International Conference on Learning
Representations, 2022.

[24] J. Liu, D. Shen, Y. Zhang, B. Dolan, L. Carin, and
W. Chen. What makes good in-context examples for
gpt-3? arXiv preprint arXiv:2101.06804, 2021.



[25] X. Liu, K. Ji, Y. Fu, Z. Du, Z. Yang, and J. Tang.
P-tuning v2: Prompt tuning can be comparable to
fine-tuning universally across scales and tasks. arXiv
preprint arXiv:2110.07602, 2021.

[26] R. T. McCoy, P. Smolensky, T. Linzen, J. Gao, and
A. Celikyilmaz. How much do language models
copy from their training data? evaluating linguistic
novelty in text generation using raven. arXiv preprint
arXiv:2111.09509, 2021.

[27] F. Mireshghallah, A. Uniyal, T. Wang, D. Evans,
and T. Berg-Kirkpatrick. Memorization in nlp fine-
tuning methods. arXiv preprint arXiv:2205.12506,
2022.

[28] R. Müller, S. Kornblith, and G. E. Hinton. When
does label smoothing help? Advances in neural
information processing systems, 32, 2019.

[29] M. G. Oh, L. H. Park, J. Kim, J. Park, and T. Kwon.
Membership inference attacks with token-level dedu-
plication on korean language models. IEEE Access,
11:10207–10217, 2023.

[30] F. Petroni, T. Rocktäschel, P. Lewis, A. Bakhtin,
Y. Wu, A. H. Miller, and S. Riedel. Language
models as knowledge bases? arXiv preprint
arXiv:1909.01066, 2019.

[31] G. Qin and J. Eisner. Learning how to ask: Query-
ing lms with mixtures of soft prompts. arXiv preprint
arXiv:2104.06599, 2021.

[32] A. Radford, K. Narasimhan, T. Salimans,
I. Sutskever, et al. Improving language understand-
ing by generative pre-training. 2018.

[33] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei,
I. Sutskever, et al. Language models are unsuper-
vised multitask learners. OpenAI blog, 1(8):9, 2019.

[34] C. Raffel, N. Shazeer, A. Roberts, K. Lee,
S. Narang, M. Matena, Y. Zhou, W. Li, and P. J. Liu.
Exploring the limits of transfer learning with a uni-
fied text-to-text transformer. The Journal of Machine
Learning Research, 21(1):5485–5551, 2020.

[35] T. L. Scao and A. M. Rush. How many data points
is a prompt worth? arXiv preprint arXiv:2103.08493,
2021.

[36] V. Shejwalkar, H. A. Inan, A. Houmansadr, and
R. Sim. Membership inference attacks against NLP
classification models. In NeurIPS 2021 Workshop
Privacy in Machine Learning, 2021.

[37] T. Shin, Y. Razeghi, R. L. Logan IV, E. Wallace,
and S. Singh. Autoprompt: Eliciting knowledge
from language models with automatically generated
prompts. arXiv preprint arXiv:2010.15980, 2020.

[38] R. Shokri, M. Stronati, C. Song, and V. Shmatikov.
Membership inference attacks against machine learn-
ing models. In 2017 IEEE symposium on security
and privacy (SP), pages 3–18. IEEE, 2017.

[39] R. Socher, A. Perelygin, J. Wu, J. Chuang, C. D.
Manning, A. Y. Ng, and C. Potts. Recursive deep
models for semantic compositionality over a senti-
ment treebank. In Proceedings of the 2013 confer-
ence on empirical methods in natural language pro-
cessing, pages 1631–1642, 2013.

[40] C. Song and V. Shmatikov. Auditing data prove-
nance in text-generation models. In Proceedings of
the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pages 196–
206, 2019.

[41] X. Tang, S. Mahloujifar, L. Song, V. Shejwalkar,
M. Nasr, A. Houmansadr, and P. Mittal. Mitigating
membership inference attacks by {Self-Distillation}
through a novel ensemble architecture. In 31st
USENIX Security Symposium (USENIX Security 22),
pages 1433–1450, 2022.

[42] K. Tirumala, A. H. Markosyan, L. Zettlemoyer, and
A. Aghajanyan. Memorization without overfitting:
Analyzing the training dynamics of large language
models. arXiv preprint arXiv:2205.10770, 2022.

[43] S. Yeom, I. Giacomelli, M. Fredrikson, and S. Jha.
Privacy risk in machine learning: Analyzing the con-
nection to overfitting. In 2018 IEEE 31st computer
security foundations symposium (CSF), pages 268–
282. IEEE, 2018.

[44] D. Yu, S. Naik, A. Backurs, S. Gopi, H. A. Inan,
G. Kamath, J. Kulkarni, Y. T. Lee, A. Manoel,
L. Wutschitz, S. Yekhanin, and H. Zhang. Differ-
entially private fine-tuning of language models. In
International Conference on Learning Representa-
tions, 2022.

[45] C. Zhang, D. Ippolito, K. Lee, M. Jagielski,
F. Tramèr, and N. Carlini. Counterfactual memo-
rization in neural language models. arXiv preprint
arXiv:2112.12938, 2021.

[46] R. Zhang, S. Hidano, and F. Koushanfar. Text re-
vealer: Private text reconstruction via model inver-
sion attacks against transformers. arXiv preprint
arXiv:2209.10505, 2022.

[47] T. Zhang, F. Wu, A. Katiyar, K. Q. Weinberger, and
Y. Artzi. Revisiting few-sample bert fine-tuning. In
International Conference on Learning Representa-
tions.

[48] X. Zhang, J. Zhao, and Y. LeCun. Character-level
convolutional networks for text classification. Ad-
vances in neural information processing systems, 28,
2015.

[49] Z. Zhao, E. Wallace, S. Feng, D. Klein, and S. Singh.
Calibrate before use: Improving few-shot perfor-
mance of language models. In International Con-
ference on Machine Learning, pages 12697–12706.
PMLR, 2021.

[50] Z. Zhong, D. Friedman, and D. Chen. Factual prob-
ing is [mask]: Learning vs. learning to recall. arXiv
preprint arXiv:2104.05240, 2021.



[51] Y. Zhou, A. I. Muresanu, Z. Han, K. Paster, S. Pitis,
H. Chan, and J. Ba. Large language models are
human-level prompt engineers. In The Eleventh In-
ternational Conference on Learning Representations,
2023.

A Broader Impact and Ethics Statement

Prompting is on the way of becoming a highly
prominent paradigm of using LLMs—which makes
assuring the privacy of the prompt data an urgent
need. We present an empirical yet efficient miti-
gation of privacy risks but we acknowledge that
this approach does not yield formal privacy guar-
antees. Therefore, we encourage model owners to
use our MIA as a tool to to empirically evaluate
the privacy of their prompted model, or their en-
semble of prompted models, before deployment. A
high MIA score should galvanize the model own-
ers to implement additional protection before the
deployment.

By relying purely on open-source LLMs and
public open source datasets in our experimental
evaluation, we make sure that the result reported in
the current work do not harm individuals’ privacy.
We also recognize the importance of transparency
in machine learning research, and we have made
efforts to provide clear explanations of our methods
and results, and provide additional experimental
results on multiple datasets in the Appendix.

B Additional Experimental Results
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Figure 9: Output Probabilities at the Target Class for Members and Non-Members. We depict the probability
of the prompted GPT2-xl on the correct target class for member and non-member data points.
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Figure 10: Output Probabilities at the Target Class for Members and Non-Members for GPT2-base. We depict
the probability of the ensemble of prompted GPT2-base on the correct target class for member and non-member
data points.

0.0 0.2 0.4 0.6 0.8 1.0
Target Prediction Probability

0.0

0.5

1.0

1.5

2.0

D
en

si
ty

Member
Non member

(a) agnews

0.0 0.2 0.4 0.6
Target Prediction Probability

0

2

4

6

D
en

si
ty

Member
Non member

(b) cb

0.4 0.6 0.8
Target Prediction Probability

0

1

2

3

D
en

si
ty

Member
Non member

(c) sst2

0.0 0.2 0.4 0.6 0.8
Target Prediction Probability

0

1

2

3

4

D
en

si
ty

Member
Non member

(d) trec

Figure 11: Output Probabilities at the Target Class for Members and Non-Members under Avg-Ens. We
depict the probability of the ensemble of prompted GPT2-xl on the correct target class for member and non-member
data points. We perform ensembling by aggregating the raw output probabilities over 50 prompted models and
computing the average output vector. We find that the discrepancy between member and non-member becomes
much smaller after ensembling.
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Figure 12: MIA risk over all Datasets after (Avg-Ens). We depict the AUC-ROC of MIA after Avg-Ens. Across
all datasets, the effectiveness of MIA (blue line) is close to random guessing (red line).
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Figure 13: Voting Probabilities for the Correct Target Class with Vote-Ens. We ensemble the individual
prompted models by obtaining the class with the highest prediction probability from each model. We show for
member and non-member data points what percentage of the 50 prompted models returns the correct target class.
This corresponds to the confidence of the ensemble.
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Figure 14: MIA Risk over all Datasets (Vote-Ens). We depict the AUC-ROC of MIA after Vote-Ens. Across all
datasets, the effectiveness of MIA (blue line) is close to random guessing (red line).
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Figure 15: MIA Risk over all Datasets for One-Shot Learning. This figure corresponds to Figure 4 with the
difference that we only use one example (instead of four) in the prompt. We depict the AUC-ROC curves over
all datasets. The red dashed line represents the MIA success of random guessing. Each gray line corresponds
to a prompted model with its four member data points. Due to the small number of member data points (1), our
resulting TPRs can only be 0% or 100% which leads to the step-shape of the gray curves. The reported average
AUC-score is calculated as an average over the individual prompted models (gray lines)’ AUC score. Additionally,
for visualization purposes, we average the gray lines over all prompted models and depict the average as the blue
line. We use 50 prompted models in this experiment..
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Figure 16: MIA on Fine-Tuning vs Prompting across all Datasets. We plot our MIA risk on prompted and
fine-tuned models given similar downstream performance. For fine-tuning, we evaluate MIA risk in two different
ways to avoid the influence of different training set size. The red dashed line represents the MIA success of random
guessing. The results show that prompts are much more vulnerable to MIA than fine-tuning.



0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Average AUC = 0.73

(a) agnews: normalized

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Average AUC = 0.83

(b) cb: normalized

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Average AUC = 0.63

(c) sst2: normalized

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Average AUC = 0.67
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Figure 17: Impact of Normalization. We report the AUC for our MIA on prompted GPT2-xl for normalized
outputs, i.e., outputs where the probabilities over all target classes of the respective downstream task add up to one.
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Figure 18: Number of teachers in average ensemble vs MIA risks. We plot the membership risk in form of the
AUC score of MIA while we vary the number of teachers in ensembling. We observe that with more data used for
ensembling, the lower risk of MIA (in terms of AUC and its variance).


