Published as a conference paper at ICLR 2025

PRECISE PARAMETER LOCALIZATION FOR TEXTUAL
GENERATION IN DIFFUSION MODELS

FLukasz Staniszewski* & Bartosz Cywinski*
Warsaw University of Technology
{luks.staniszewski,bcywinskill}@gmail.com

Franziska Boenisch Kamil Deja
CISPA Helmbholtz Center for Information Security Warsaw University of Technology
boenisch@cispa.de IDEAS NCBR

kamil.dejalpw.edu.pl

Adam Dziedzic
CISPA Helmholtz Center for Information Security
adam.dziedzic@cispa.de

ABSTRACT

Novel diffusion models can synthesize photo-realistic images with integrated
high-quality text. Surprisingly, we demonstrate through attention activation patch-
ing that only less than 1% of diffusion models’ parameters, all contained in atten-
tion layers, influence the generation of textual content within the images. Building
on this observation, we improve textual generation efficiency and performance by
targeting cross and joint attention layers of diffusion models. We introduce several
applications that benefit from localizing the layers responsible for textual content
generation. We first show that a LoRA-based fine-tuning solely of the localized
layers enhances, even more, the general text-generation capabilities of large dif-
fusion models while preserving the quality and diversity of the diffusion models’
generations. Then, we demonstrate how we can use the localized layers to edit
textual content in generated images. Finally, we extend this idea to the practi-
cal use case of preventing the generation of toxic text in a cost-free manner. In
contrast to prior work, our localization approach is broadly applicable across var-
ious diffusion model architectures, including U-Net (e.g., LDM and SDXL) and
transformer-based (e.g., DeepFloyd IF and Stable Diffusion 3), utilizing diverse
text encoders (e.g., from CLIP to the large language models like T5). Project page
available at https://t2i-text-loc.github.i0/,

1 INTRODUCTION

Recent advancements in generative models for the vision domain have demonstrated remarkable
efficacy in image synthesis tasks and significant improvements in the quality and diversity of the
generated outputs (DDPM (Ho et al., [2020), LDM (Rombach et al.| [2022)). The next generation
of models, including DeepFloyd IF (StabilityAll [2023)), Imagen (Saharia et al., |2022), Stable Dif-
fusion 3 (SD3) (Esser et al.,|2024), and FLUX (Labs} |2024)), extend this progress to photo-realistic
generations with high-quality visual text. While introducing impressive capabilities, such models
usually operate as black-boxes with complex architectures entangling various skills.

In this work, we propose to shed some light on the inner workings of recent diffusion models and
introduce the first method to localize parts of the model responsible for the generation of textual
content, based on activation patching technique (Meng et al.,[2022). We determine that only 0.61%
of Stable Diffusion XL (Podell et al., [2024), 0.21% of Deepfloyd IF (Stability AL [2023)), and 0.23%
of Stable Diffusion 3 (Esser et al.}[2024) parameters are responsible solely for this task. Our observa-
tions hold across various DMs’ architectures, both U-Net and Transformer-based, for DMs utilizing
diverse text encoders, such as CLIP (Radford et al.,[2021)) and T5 (Raffel et al.,[2020; Roberts et al.,
2022). Additionally, we present several applications that benefit from our localization method.
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We rst show that by selectively ne-tuning only the identi ed subset of layers responsible for
textual content, we can signi cantly enhance the model's performance in generating text within
images without reducing the quality and diversity of generated samples. Then, we present that by
selectively applyingoatching we are able to substitute the generated text without affecting other
visual attributes of an image. Our method does not require any additional extra data (potentially
with human annotations), DM training (Brooks ef al., 2023), semantic maps which indicate which
part of images should be preserved during the diffusion protess (Andonian et al., 2021; Tuo et al.,
2024), or optimization. Finally, we extend our edition technique to prevent the generation of toxic
text, on the ywithout imposing additional computational cost.

Our contributions can be summarized as follows:

1. We localize a small subset of cross and joint attention layers in diffusion models that deter-
mine text generated within images. Our observations are architecture-agnostic.

2. We introduce a new ne-tuning strategy that targets only the localized subset of layers
responsible for textual content, improving text generation performance while maintaining
the model's overall generation diversity and ef ciency.

3. We incorporate our ndings into the new image-to-image method for the text edition within
synthetic images, outperforming previous techniques on standard benchmarks for image
text editing, achieving superior accuracy and visual consistency.

4. We show that our method can also be effectively used to prevent the generation of harmful
or toxic text within images in one generation pass.

2 BACKGROUND AND RELATED WORK

Text-to-Image diffusion models. Diffusion models|(Song & Erman, 2020; Ho et|al., 2020) ap-
proximate data distribution by training a noise estimatd;;t;y) to reverse the diffusion pro-

cess. The synthetic images are then generated by sampling an initial Gaussian noise, denoted as
xt N (0;1), and progressively removing the predicted noise at each timet stefy;:::;1 up

until obtaining clean data sampkg. The noise predictor (x;t;y) is usually implemented as a
U-Net (Ronneberger et al., 2015) or, recently, (as in SD3 Esser ét al.| (2024)) a transformer-based
model (Vaswani, 2017; Peebles & Xie, 2023). In common text-to-image DMs (Ramesh et al., 2022;
Rombach et al., 2022; Saharia et al., 2022; StabilityAl, 2023), the conditioning ynfgua text
embedding derived from a textual prongpaising pre-trained text encoders, such as the text encoder
from CLIP (Radford et al., 2021) or the large language models like T5 (Raffel et al., 2020) as used
in DeepFloyd IF (StabilityAl, 2023) or SD3 (Esser et al., 2024)).

Cross and Joint Attention layers. The integration of text conditioning into the denoising pro-

cess is achieved through cross-attention layers (Vaswani, 2017). The most standard cross-attention
(usede.g., in Stable Diffusion or SDXL (Rombach et al., 2022)) operates by computing three com-
ponents: the quer®) = hwQ, the keyK = eWK, and the value/ = eW", whereh ande
represent the hidden image and text representations, respectively, &nd/ ¥ , andwV are learn-

able weight matrices. The attention probabilities are then calculated using the following equation:

Attention(Q; K; V) = softmax %TT V; whered is a scaling factor equal to the dimension of

the queries and keys. More recent diffusion models extend this mechanism further. Speci cally, the
DeepFloyd IF (StabilityAl, 2023) model implements cross-attention layers where the keys and val-
ues are formed by concatenating the projections of h@hde. Esser et al. (2024) further advance

this mechanism by introducing a so-calleéht attention where each attention compone, K ,

andV) is a concatenation of projections from bdthande. Crucially, in this setup, both image

and text projections are propagated throughout the diffusion model, in contrast to standard cross-
attention layers where each attention block received the same static text-encoder embexdding
input. In our work, we demonstrate that our patching technique is invariant to these implementation
changes and can be applied effectively across all of them.

Interpretability of diffusion models. Recent works have explored the inner workings of diffusion
models by analyzing cross-attention layers (Tang et al., 2023; Hertz et al., 2023). On the other hand,
Park et al. (2024) explains the predictions of diffusion models at each denoising step using saliency
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maps. Other research efforts have focused on localizing where speci ¢ concepts are stored within
diffusion models. For instance, Hintersdorf et al. (2024) pinpoint the memorization of individual
training data samples within DMs at the neuron level in cross-attention layers, usizestioee

Basu et al. (2024b) develop a framework utilizing causal tracing (Pearl, 2001) to identify where
knowledge of various styles, objects, or facts is stored within the Stable Diffusion model (Rom-
bach et al., 2022). In follow-up work, Basu et al. (2024a) extend this framework by introducing a
mechanistic approach to knowledge localization across different text-to-image DMs. Despite being
effective across models with standard cross-attention implementations, such as Stable Diffusion XL
(SDXL) (Podell et al., 2024) and DeepFloyd IF StabilityAl (2023), it lacks analysis on the most
recent attention variants, such jamt attention(Esser et al., 2024). In contrast, our approach lo-
calizes small fractions of components responsible for generating textual content and is applicable
across different cross-attention variants.

Text rendering in diffusion models. Recent diffusion models, such as Stable Diffusion (Rom-
bach et al., 2022), generate high-quality images conditioned on text prompts but often struggle with
rendering coherent visual text. To address this limitation, more advanced DM architectures (e.g.,
SDXL, Deep Floyd IF, SD3 (Esser et al., 2024), and FLUX (Labs, 2024)) incorporate multiple text
encoders, often based on models like CLIP (Radford et al., 2021) or large language models like
T5 (Raffel et al., 2020), to enhance the quality of generated text within images.

In parallel with the above efforts, several other approaches have emerged to improve the delity of
generated text by adding components to the generation pipeline. For example, TextDiffuser Chen
et al. (2023) employs a two-stage process where a layout transformer (Gupta et al., 2021) rst iden-
ti es text coordinates as segmentation masks, which are later used to ne-tune a latent diffusion
model to accurately inpaint or modify text based on prompts. Similarly, AnyText (Tuo et al., 2024)
integrates an auxiliary latent module to process inputs like text glyphs or masked images and a text
embedding module using OCR to blend stroke data with image caption embeddings. Additionally,
other works incorporate extra conditioning during generation, such as Zhang et al. (2024b) with
sketch images or Yang et al. (2024), which leverages glyph instructions.

Fine-tuning diffusion models with LoRA. Low-Rank Adaptation (LoRA) (Hu et al., 2022) is

a ne-tuning approach known for its capacity to deliver high-quality results with both spatial and
temporal ef ciency. LORA achieves this by introducing external low-rank weight matrices, which
are optimized for the attention layers of the base model while keeping the pre-trained model weights
unchanged. After the training process, these low-rank matrices de ne the adapted model, which can
then be applied to the target task. Recently, (Frenkel et al., 2024) introduced B-LoRAs that leverage
LoRA to explicitly disentangle the style and components of an image. In our work, we tune the
localized layers using LoORA to further improve the generated text within images.

Controlling diffusion models with cross-attention. In Appendix A, we further describe related
work on text-to-image models ne-tuning and image editing by leveraging cross-attention layers and
manipulating the denoising steps through keys and values.

3 EXPERIMENTAL SETUP

Benchmark. For evaluation, we adapt two benchmarks from Yang et al. (2024) for the text edit-
ing. SimpleBenchconsists of 400 prompts following the templaiesign that says ¥ keyword>". ,

while CreativeBenchincludes 400 more complex prompts adapted from GlyphDraw Ma et al.
(2023), such a¥lowers in a beautiful garden with the word<’keyword- " written. . The keywords

used in the benchmarks are from a pool of single-word candidates from Wikipedia and categorized
into four buckets based on their frequenByickets, Bucket}(¥, Bucket;)?, andBuckety,. Both
benchmarks contain the same set of keywords, which serve as text that should be generated in the
images. In this work, we use 100 prompts from each benchmark, with WOI‘dSBEmIkEt[lOkp, as
avalidation setand the remaining 300 prompts agest set The prompts from these benchmarks
serve as the source prompgis. To create the target prompt for eachps, we use the same
prompt template as ips, but select the keyword from a different source prompt, ensuring that the
correspondings andpr differ only in the keywords.
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Metrics. We measure two main aspects of the generations. As text alignment, we refer to the
correspondence to the keyword provided in the prompt. As image alignment, we calculate the
quality of the image outside of the modi ed tex.().,background). To measure the text alignment,

we use theDCR F1 Score which is calculated as follows: F1 Score 2 Precision Recall. yhere
Precisionmeasures the ratio of predicted characters in the keywordRecdllmeasures the ratio

of characters in the keyword that are covered by the prediction. Additionally, we compute the
Levenshtein distance (LD)between the keyword and the text predicted by the OCR model and
CLIP-T Score Radford et al. (2021) measuring the similarity of the target text (contained in the
target promppr ) and the text in the edited image. To measure the alignment between original and
edited images, we calculakdean Squared Error (MSE), which is the average squared difference
between the reference and generated images, indicating how close the generated image is to the
reference; lower values indicate higher similarity. We also comp@&tectural Similarity Index
Measure (SSIM)Wang et al. (2004) that evaluates the perceived quality of a generated image by
comparing its luminance, contrast, and structure to a reference image, with higher values indicating
greater similarity. Finally, we use tHeeak Signal-to-Noise Ratio (PSNR)which measures the

ratio between the maximum possible power of a signal and the power of corrupting noise that affects
the delity of its representation, where the signal, in our case, is the reference image and the noise
is the error introduced by editing the image; higher PSNR values indicated greater delity.

Models. We identify the layers responsible for text generation in the three recent DMs, namely
SDXL (Podell et al., 2024), DeepFloyd IF (StabilityAl, 2023), and SD3 (Esser et al., 2024), that
differ signi cantly in their architecture, especially in the text encoder parts and the implementations
of attention layers. To detect text in generated images, we use the EasyOCR model. We choose a
non-multi-modal method for this task to ensure that OCR-based metrics are computed purely based
on the text present in images. We observe that multi-modal OCR models tend to guess the text based
on the visual context, even when not present in the image. As a text detection model, we use the
DBNet (Liao et al., 2020).

4 LOCALIZATION OF ATTENTION LAYERS RESPONSIBLE FORTEXTUAL
CONTENT GENERATION

We begin by presenting details of our patching technique for cross and joint attention layers, which
we employ to localize the components of diffusion models responsible for the content of the gen-
erated text. We demonstrate that our method generalizes across diverse model architectures despite
differences in the implementations of attention layers and with different con gurations as well as
types of text encoders.

4,1 FATCHING TECHNIQUE

Recent works (Basu et al., 2024a; Orgad et al., 2023) demonstrate that altering the key and value ma-
trices of cross-attention layers can effectively in uence the concepts generated by diffusion models.
Speci cally, Basu et al. (2024a) show that only certain attention layers within DMs are responsible
for generating speci c visual concepts, such as objects or styles. This approach thatinjectidin

is effective in U-Net-based DMs such as Stable Diffusion or DeepFloyd IF, as shown in Figure 1
B. These models implement cross-attention layers that directly input the prompt embedutidg
multiply it by the keyWK and valuew"V matrices. However, it is unsuitable for the most recent
DMs that leverage the joint attention mechanism (Esser et al., 2024), such as SD3 and FLUX. In
these models, the subsequent attention layers process and modify both image and conditioning text,
allowing each following layer to receive text embeddings modi ed by its preceding layers.

In our work, we leverage thactivation patchingechnique (Meng et al., 2022) to identify the cross
and joint attention layers responsible for generating text content in images across different DM's
architectures. We present the overview of the patching process in FighreStippose we want

to edit the text in the images generated from the source prommgt = 'A sign that says ts”.

to match the text in the target prompt = 'Asignthatsaystr”'. To measure the impact of
each individual cross-attention layleon the content of text generated in the output image, we rst
generate an imagie from pr, caching the key&t = er W and values/r = erW,\Y (A.l),
whereer denotes the textual input part to the cross-attention layer. Then, while genégafiogn

ps, we overwriteK s with Kt andVs with V¢ (A.ll) . We then calculate image and text alignment
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Figure 1:Overview of the localization process.Our goal is to edit the image generated from the
source prompps using the target promgtr . To nd which cross and joint attention layers should
be modi ed, we pass the target promgt through the DM, caching the keys and values. Then,
while generating the image frops we substitute the keys and values with the cached ones. We
select the layers which yield the highest image and text alignment. (A) Localizing by Patching is
applied to SD3, and (B) Localizing by Injection is used for SDXL and DeepFloyd IF.
# localized total # of crossi# localized fraction of model
Model ‘ | 1 . Lp CL 0
ayers |-attention layergparameters parameters [%)]

SDXL (Podell et al., 2024) 3 70 15.7M 0.61%
DeepFloyd IF (StabilityAl, 2023) 1 22 8.9M 0.21%
SD3(Esser et al., 2024) 1 24 4.7M 0.23%

Table 1:Less than1% of DMs' parameters in uence text generation within the images.

metrics for the generations produced by the diffusion model with modi ed attention activations. To
ensure consistency in our method, we always cache and overwrite ongxthiesys and values,
which result from multiplying the textual parts of the residual stream by the key and value matrices.
It allows us to apply our technique across different DM architectures despite their differences in
attention implementations.”

4.2 CROSSATTENTION LAYER LOCALIZATION

We localize the layers responsible for text generation in three DMs with different architectures and

text encoders: SDXL, DeepFloyd IF, and SD3. To this end, we run our patching approach for each

cross-attention layer in each model on our validation set. As presented in the overview of the re-

sults in Table 1 and Figure 2, we are able to successfully identify cross-attention layers that, when
patched, cause the DMs to produce the text that closely matches the text in the targefgrompt

both DeepFloyd IF and SD3 models, there is only a single layer that strongly responds when patched

Figure 2: Localized attention layers responsible for the content of the generated textWe
selectively patch individual cross and joint attention layers with computations for the target prompt
and measure the responses with OCR F1 Score. We identify three layers with the highest responses
in SDXL (55, 56, and 57), one layer in DeepFloyd IF (17), and one layer in SD3 (10).
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Figure 3:The localized layers effectively balance the text alignment with the target promppr

and the image alignment with the source promptps. For ease of exposition, we measure the text
alignment with OCR F1 and the image alignment with SSIM. We observe that injecting the target
promptpr to too many layers decreases the image alignment and introduces undesirable artifacts,
e.g.,the Japanese text on the robot's chest in 2nd image from the right and the lack of sh in the 1st
image from the right. Conversely, injectipg to too few layers does not edit the generated text. We
present more details about the experiment in Appendix E.

CLIP-T OCRF1

Target prompt Model Templatgg ~ Template Texts  Textr

Template; :Texts SDXL 0.727 0.436 0.354 0.206
Template; :Textr SDXL 0.732 0.436 0.194 0.324
Templatg :Textr SDXL 0.724 0.440 0.203 0.331
Template; :Texis DeepFloyd IF 0.721 0.453 0.554 0.244
Template; :Textr DeepFloyd IF 0.729 0.453 0.260 0.475
Templatg :Textr  DeepFloyd IF 0.721 0.465 0.275 0.452
Template; :Textr SD3 0.675 0.443 0.544 0.231
Templatg; :Textr SD3 0.599 0.443 0.266 0.333
Templatg :Textr SD3 0.684 0.446 0.276  0.304

Figure 4:Patching preserves visual components from the source prompt, taking only the tex-

tual information from the injected target prompt. In all the combinations of templates and texts
that we inject to localized layers of diffusion models (with other layers receiving both source tem-
plate and source text), the nal visual components of the image are always closer to the original
template, while the textual content is always aligned with the one from an injected prompt. The
source prompt is always de ned @g=Templatg:Texts, while we change the target prompts to
Templatg :Texts, Templatg : Textr , and Template: Textr (from left to right for the images).

with the other prompt. On the other hand, in the SDXL model, we identify three such layers. The
fact that in SDXL, the responses measured in the F1 Score are much more distributed than in other
analyzed models may be attributed to the fact that SDXL has signi cantly more cross-attention lay-
ers than the other models and exhibits the lowest text generation capabilities. Overall, our ndings
suggest that a very small fraction of the DM's parameters is primarily responsible for the text content
in the generated images. Additionally, the successful localization of DM components across models
demonstrates the applicability of our localization method across different DM architectures. In Fig-
ure 3, we additionally visualize how patching a different number of layers affect the nal generation

in Stable Diffusion XL.

4.3 SPECIALIZATION OF THE LOCALIZED LAYERS

In the previous section, we localized layers that are responsible for the generation of the textual
content. Here, we delve deeper into this analysis and evaluate their specialization. In particular, we
study what is the information extracted from the prompt by the selected layers and how it affects

the generation. To measure this effect, we conduct a series of experiments with arti cial prompts

created as a combination otemplatethat describes the background of the image t@xtl usually

in the form of a simple word. We present examples of such prompts in Table 2.
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We show that selected layers are only affected by the part of thgable 2: Examples of prompts.
target prompt that mentions the textual content. To that end,

we sample images with a prompt = Templatg : Texis Template | Text
used as conditioning for almost all the layers while patching A ook cover with text “Love'
the localized layers with one of three target prompt options: A sign that says 'STOP'
(1) the same prompp¢ = ps), (2) a prompt that shares the A paper letter with note| 'Lies’
same template but different texgr( = Template : Textr) or
(3) a prompt with different template and texir(= Templatg : Text). We present the result of

this experiment in Figure 4. We observe that the nal generation follows the text provided by the
promptpr used for patching. However, at the same time, changing the template in the target prompt
does not affect the nal generation, as the background image is always signi cantly more aligned
with the template from the source prompt. This observation means that the layers localized by our
method are not only used for generating the textual content in the nal sample but are also highly
specialized, focusing solely on the textual content of the input prompt.

5 APPLICATIONS OFOUR METHOD

Focusing on the localization of cross and joint attention layers for text generation offers several key
advantages. In this section we highlight speci ¢ use cases where it plays an instrumental role. We
rst show that we can precisely ne-tune selected layers to improve the quality of the generated text
of a base model without affecting its remaining generative capabilities. Then, we present that with
our patching technique, we can ef ciently edit text from the model generations. We then extend the
latter application to the cost-free technique for mitigating harmful or inappropriate text generation.

5.1 IMPROVING TEXT GENERATION THROUGH FINETUNING

We leverage our localization insights to ne-tune pre-trained DMs on the task of visual text gener-
ation. In particular, we show that by applying Low-Rank Adaptation (LoRA) only to the localized
text-speci ¢ layers, we can signi cantly improve the quality of the generated text without affecting
the model's performance on other tasks.

5.1.1 TRAINING SETUP

For training, we utilize a randomly chosen subset of 74,285 images from the MARIO-LAION 10M
dataset Chen et al. (2023). In order for the training text captions to contain text that is directly
presented on the corresponding training image, we construct them according to the téamplate
image with text saying< text-"" , where < text>" constitutes of OCR labels corresponding to the
image. We compare the performance of applying LoRA to the localized layers with the baseline
adaptation approach, for which we directly follow Hu et al. (2022) and apply LoRA to all cross-
attention layers. We optimize both models until convergence and evaluate the quality of model
generations after the next epochs on our test set introduced in Section 3.

To assess the quality of the generated text, we report OCR F1-Score and CLIP-T. Additionally,
to quantify the effect of ne-tuning on the general generative capabilities of the model, we use
the distribution precision and recall metrics (Kykniemi et al., 2019) that measure the quality

of individual samples (precision) and their diversity (recall) against the generations before ne-
tuning. We adapt the original method to high-resolution generations from large diffusion models by
substituting the original inception embeddings with the CLIP ones.

5.1.2 HNE-TUNING RESULTS

Our results demonstrate that by ne-tuning only the three cross-attention layers, identi ed as instru-
mental for the generation of textual content, one can obtain a model yielding higher-quality visual
text compared to the model with all of the cross-attention layers ne-tuned while preserving the

models' generation capabilities. As presented in Figure 5 (top left), even though ne-tuning of the

whole model initially converges faster towards the higher performance, after 20 epochs of training,
the model starts to over t, what can be observed as a signi cant drop in the recall of generated sam-
ples presented in Figure 5 (bottom left). On the other hand, when ne-tuning selected layers, we
can observe steady improvement in the quality of the generated text, with little effect on the model's
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