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Abstract

Diffusion models (DMs) memorize training images and can
reproduce near-duplicates during generation. Current detec-
tion methods identify verbatim memorization but fail to cap-
ture two critical aspects: quantifying partial memorization oc-
curring in small image regions, and memorization patterns
beyond specific prompt-image pairs. To address these limi-
tations, we propose Foreground Background Memorization
(FB-Mem), a novel segmentation-based metric that classifies
and quantifies memorized regions within generated images.
Our method reveals that memorization is more pervasive than
previously understood: (1) individual generations from sin-
gle prompts may be linked to clusters of similar training im-
ages, revealing complex memorization patterns that extend
beyond one-to-one correspondences; and (2) existing model-
level mitigation methods, such as neuron deactivation and
pruning, fail to eliminate local memorization, which persists
particularly in foreground regions. Our work establishes an
effective framework for measuring memorization in diffusion
models, demonstrates the inadequacy of current mitigation
approaches, and proposes a stronger mitigation method using
a clustering approach.

Extended version — https://arxiv.org/abs/2508.12148

1 Introduction

Diffusion models (DMs) (Sohl-Dickstein et al. 2015; Song,
Meng, and Ermon 2020; Song et al. 2020) and their text-
to-image derivatives (e.g., Latent Diffusion (Rombach et al.
2022), DALL-E (Ramesh et al. 2022)) have emerged as pow-
erful generative frameworks, achieving remarkable success
in producing high-fidelity images. Trained predominantly
on large-scale datasets scraped from the Internet, such as
LAION-5B (Schuhmann et al. 2022), these models often in-
herit both the richness and the risks associated with such
data sources. A growing concern among researchers and
practitioners is the potential for DMs to memorize and in-
advertently reproduce portions of their training data, raising
serious privacy, ethical, and legal issues (Carlini et al. 2023a;
Somepalli et al. 2023a,b). These issues become particularly
problematic when reproduced content includes copyrighted

“These authors contributed equally.
Copyright © 2026, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

materials or sensitive personal information without explicit
consent or safeguards.

Existing detection methods (e.g., Carlini et al. (2021);
Somepalli et al. (2023a); Wen et al. (2024)) can accurately
identify exact duplications using metrics like SSCD scores
(Pizzi et al. 2022) or CLIP scores (Radford et al. 2021).
While Webster (2023) and Chen et al. (2025) have identi-
fied “template memorization” and “local memorization” re-
spectively to detect partial memorization, it remains unclear
how to quantify or measure the potential harm of such mem-
orization. For instance, memorizing a color palette in the
background of an image poses significantly less risk than
memorizing a copyrighted object or identifiable feature.

In this work, we argue that inexact memorization de-
tection should be more fine-grained to better assess the
severity of partial memorization. Specifically, we propose
Foreground Background Memorization (FB-Mem), a novel
segmentation-based metric that classifies and quantifies
memorized content across different regions of generated
images. Given two images, FB-Mem applies segmentation
maps (Zheng et al. 2024) to differentiate foreground and
background regions, compares each component using a
pixel-wise image similarity metric and classifies the memo-
rization into four categories: VM (verbatim memorization),
FM (foreground memorization), BM (background memo-
rization), and NM (not memorized).

Moreover, existing detection methods evaluate memoriza-
tion for specific prompt-image pairs, neglecting the fact
that DMs can generate diverse outputs from the same text
prompt. Under FB-Mem evaluation, we observe that these
varied outputs are not necessarily linked to a single training
image, but instead exhibit a one-prompt-to-many-training-
images (one-to-many) correspondence. We note that this no-
tion is similar to “retrieval verbatims” by Webster (2023).
However, Webster (2023) only considers verbatim memo-
rization and does not perform systematic analysis, a gap we
aim to address in this work. By clustering semantically sim-
ilar text prompts, we can fully characterize this complex
memorization behavior across different categories of mem-
orization type using FB-Mem.

Our proposed tools do not only establish an effective
framework for detecting memorization in DMs, but also pro-
vide a robust evaluation methodology for assessing miti-
gation algorithms. To address memorization, various miti-
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Figure 1: Examples of different types of memorization under our FB-Mem evaluation. We extract the foreground and
background of the memorized images and generated images, and classify memorization using Algorithm 1 to: Verbatim Mem-
orization (column 1-3), Foreground Memorization (column 4-6), and Background Memorization (column 7-9).

gation strategies have been proposed, including inference-
stage methods that adjust text-embedding or attention log-
its (Ren et al. 2024; Wen et al. 2024), training-stage ap-
proaches that fine-tune pre-trained models (Ren et al. 2024;
Wen et al. 2024), and neuron-level interventions (Hinters-
dorf et al. 2024; Chavhan et al. 2024). In this work, we
focus on methods that permanently modify model weights
(Wen et al. 2024; Hintersdorf et al. 2024; Chavhan et al.
2024), which represent more fundamental and responsible
changes to the model. While such mitigation methods are ef-
fective against verbatim memorization, we observe that par-
tial memorization, particularly foreground memorization,
still persists after these mitigations. Furthermore, the one-
to-many correspondence also remains intact following these
interventions.
In summary, we make the following contributions:

* We propose FB-Mem, a segmentation-based metric that
effectively detects and quantifies partial memorization in
diffusion models beyond existing verbatim detection;

¢ We reveal that memorization is more pervasive than pre-
viously understood, with individual generations linked to
multiple training images and local memorization persist-
ing after previous mitigation methods;

* We demonstrate the inadequacy of current mitigation ap-
proaches using FB-Mem and propose a novel clustering-
based mitigation method.

2 Background and Related Work

Neural network memorization: Neural network memo-
rization is a common phenomenon in supervised learning
(Arpit et al. 2017), self-supervised learning (Wang et al.
2024a,b), including contrastive learning (Wang et al. 2025),
image autoregressive models (Kowalczuk et al. 2025), and

diffusion models (Somepalli et al. 2023a,b; Wen et al. 2024).
While it has been shown that memorization improves model
generalization (Feldman 2020; Feldman and Zhang 2020;
Wang et al. 2024b), it could also lead to critical privacy con-
cerns, such as data extraction attacks (Carlini et al. 2019,
2021, 2023b; Kowalczuk et al. 2025). To detect such mem-
orization in diffusion models, various approaches have been
proposed, including SSCD scores (Pizzi et al. 2022), CLIP
scores (Rombach et al. 2022), pairwise SSIM scores be-
tween initial noise differences (Webster 2023), distribution
of attention (Ren et al. 2024), edge inconsistency (Webster
2023), and predicted noise magnitudes (Wen et al. 2024).

We note that Chen et al. (2025) apply brightened atten-
tion masks to identify local memorization, which shares sim-
ilarities with our approach. However, we emphasize sev-
eral key differences: (1) we provide a finer-grained clas-
sification that distinguishes between foreground and back-
ground memorization; (2) we conduct instance-level evalu-
ation to identify one-prompt-to-many-training-images cor-
respondence; and (3) we focus on model-level mitigation
methods rather than prompt-level interventions.

Mitigating memorization: To address the problem of
memorization for DMs, various methods have been pro-
posed. For example, inference-stage mitigation, includ-
ing attention logit rescaling (Ren et al. 2024) and text-
embedding adjustment (Wen et al. 2024); training-stage mit-
igation by fine-tuning an existing DM-based model (Ren
et al. 2024; Wen et al. 2024); and neuron-level mitigation
(Maini et al. 2023; Hintersdorf et al. 2024; Chavhan et al.
2024) that localizes and deactivates certain neurons respon-
sible for memorization. In this work, we focus on mitiga-
tion methods that change the model parameters, including
the fine-tuning approach (Wen et al. 2024), the neuron deac-
tivation approach (Hintersdorf et al. 2024), and the weight



pruning approach (Chavhan et al. 2024).

Other techniques are also potentially applicable for miti-
gating memorization, for example, machine unlearning (pro-
posed for removing private personal data) (Cao and Yang
2015; Bourtoule et al. 2021; Sekhari et al. 2021; Aldaghri,
Mahdavifar, and Beirami 2021; Wu et al. 2024b) or con-
cept removal (proposed for removing nudity or harmful con-
cepts) (Chavhan, Li, and Hospedales 2024; Gandikota et al.
2023; Lyu et al. 2024) can potentially be used to remove the
memorized information.

3 Measuring Memorization

In this section, we (1) address the gap of partial memoriza-
tion by proposing the novel Foreground Background Memo-
rization (FB-Mem) metric; and (2) propose an instance-level
measurement for identifying one-to-many correspondence.

3.1 Memorization Pipeline

Existing approaches: Current research studies memo-
rization in DMs, with particular focus on investigating mem-
orization patterns in Stable Diffusion (SD) v1.4 (Rombach
et al. 2022). While newer models exist, no datasets with
memorized data are available for them. Consequently, state-
of-the-art work (Webster 2023; Wen et al. 2024; Hintersdorf
et al. 2024) considers 500 memorized LAION prompts for
SD v1.4, which we adopt in our paper.! Hintersdorf et al.
(2024) further split this dataset into Verbatim Memoriza-
tion (VM) and Template Memorization (TM) categories us-
ing SSCD scores (Pizzi et al. 2022), which represent the
cosine similarity of image embeddings obtained from the
Self-Supervised Copy Detection (SSCD) model. Specifi-
cally, Hintersdorf et al. (2024) uses a threshold of 0.7 to
distinguish between these two classes.

A new pipeline: Previous works typically assess memo-
rization on a per-prompt basis, under the assumption that
memorized prompts produce highly similar or even near-
identical outputs across multiple generations. However, our
empirical observations challenge this assumption: many
memorized prompts result in significant variability across
generated samples and may generate non-memorized sam-
ples even when using the same seed, as we will show in
Section 3.3. Consequently, we manually reviewed and la-
beled 1,500 images generated using 300% of the memorized
prompts from Chen et al. (2025). Each image was reviewed
and labeled as VM, TM, or NM based on its visual resem-
blance to ground-truth images.

3.2 Measuring partial memorization

Previously, we discussed that existing approaches classify
memorization into VM and TM. While VM has a clear def-
inition as exact duplication, TM lacks a rigorous defini-
tion. Hintersdorf et al. (2024) and Webster (2023) state that

'We extend our discussion to Stable Diffusion 3 in Section 4.4.

2We use this manually labeled subset to select the optimal sim-
ilarity metric M in Section 3.2, while we use the complete 500
prompts for subsequent experiments.

Algorithm 1: Foreground Background Memorization

Input: Generated image x4, training image X, similarity
metric M, score threshold 7, segmentation threshold 3

Output: Memorization type € {VM, FM, BM, NM}

1: Extract foreground mask Sr(xg), S¢(x¢)

2: Extract background mask Sy (xg), Sp(x¢)

3: My + M(xy,%¢)

4 if % < B then

50 My < M(xg,%¢ © Sg(%¢))

6:  Mpg — M(x40 Sp(xg), %t © Sp(x¢))

7: else if% > 1— [ then
8: My M(xy 0 St(xg),%x¢ © Sp(x¢))
9: Mbg — M(
10: else
11: Mg+ M(x4© S¢(xg),%¢ © S(x¢))
12: My < M(xg © Sp(x4),%x: © Sp(xt))
13: end if
14: if Mfull >T then
15:  return VM (Verbatim Memorization)
16: else if M, > 7 then
17:  return FM (Foreground Memorization)
18: else if My, > 7 then
19:  return BM (Background Memorization)
20: else
21:  return NM (Not Memorized)
22: end if

Xg, %1 © Sp(xt))
g

TM reproduces only the general composition of training im-
ages while exhibiting non-semantic variations at fixed image
positions. However, this definition does not accurately as-
sess the potential harm of such memorization. For instance,
memorizing a common background pattern poses minimal
risk, whereas memorizing copyrighted content or artwork,
even when appearing in a small region, should be identified
and addressed (See Figure 1 for examples). Motivated by
this limitation, we aim to provide a fine-grained classifica-
tion of TM that better captures the varying degrees of poten-
tial harm associated with different types of memorization.

Foreground background memorization: We propose a
novel metric for measuring memorization called Foreground
Background Memorization (FB-Mem). Our FB-Mem algo-
rithm (Algorithm 1) utilizes a three-step comparison: (1)
foreground/background extraction: given a pair of a gen-
erated image X, and a training image X, FB-Mem first
applies segmentation to both images to extract foreground
and background masks Sy and Sy; (2) computing similarity:
given a a similarity metric M, we calculate the full image
similarity My, between the generated and training images,
and the foreground/background similarity between their ex-
tracted foreground/background, respectively; (3) memoriza-
tion classification: finally, given a threshold 7, we classify
the memorization into four possible types.

Specifically, if the full image similarity exceeds the
threshold 7, FB-Mem returns Verbatim Memorization (VM).
Otherwise, it checks foreground and background similarities
in sequence, returning Foreground Memorization (FM) or



Table 1: Performance of each metric in classifying different memorization: 1) VM-NM; 2) TM-NM; 3) VM-TM.

Classification VM-NM TM-NM VM-TM

Metrics SSIM  MS-SSIM  SSCD SSIM  MS-SSIM  SSCD SSIM  MS-SSIM  SSCD
AUROC 0.989 0.994 1.000 0.886 0.962 0.992 0922 0.884 0.875
f-1 Score 0.820 0.992 0.986 0.727 0.318 0.343 0.361 0.846 0.742
TP@1%FP 0.897 0.986 0.997 0300 0.856 0993 0517 0.528 0.489
Accuracy 0.954 0.997 0.995 0.779 0.651 0.661 0.404 0913 0.831

Background Memorization (BM), respectively, if either ex-
ceeds the threshold. If none of the similarity scores meet the
threshold, it classifies the pair as Not Memorized (NM).

To avoid reporting false positives when image segmen-
tation fails, such as when the quality of the image is low,
we perform an adaptive similarity computation based on the
foreground proportion in the generated image. When the
foreground region is very small (proportion < f3 of the to-
tal image size, where (3 is a tunable hyper-parameter), the
algorithm compares the entire generated image against only
the foreground of the training image for foreground simi-
larity, while computing background similarity using masked
regions from both images. Conversely, when the foreground
dominates the image (proportion > 1 — f3), it compares the
masked foreground regions but uses the entire generated im-
age against the training image’s background for background
similarity. For balanced cases where the foreground propor-
tion falls between these extremes, the algorithm performs
standard masked comparisons for both foreground and back-
ground regions. For all experiments reported in this paper,
we adapt the threshold of 3 = 0.03.

Choosing an optimal M: In principle, our FB-Mem al-
gorithm can be equipped with any suitable similarity metric
M . In this paper, we choose Multiscale Structural Similarity
Index (MS-SSIM) (Wang, Simoncelli, and Bovik 2003) as
our metric M. SSIM is a standard tool for comparing pixel-
wise image similarity through the lens of luminance, con-
trast, and structure. MS-SSIM further performs multiple re-
scaling and down-sampling procedures on the contrast and
structural components to obtain a more robust form. Details
of SSIM and MS-SSIM are provided in the Appendix. Next
we justify our choice of M.

Justifying the choice of M/: To evaluate the effectiveness
of different memorization metrics, we conducted a three-
way classification task (VM, TM,> NM) using our manu-
ally labeled dataset described in Section 3.1. We generated
1,500 images using the 300 labeled prompts and computed
the similarity of each generated image to all 498* ground-
truth memorized images using three metrics: SSIM, MS-
SSIM, and SSCD. For each generated image, we identified
the highest-scoring ground-truth pair across all comparisons
under each metric.

Similarity classification thresholds were established
based on prior work. For SSIM and MS-SSIM, we set the

3In particular, we perform direct comparison of entire images
(as done by previous work) rather than considering any sort of seg-
mentation (as we prescribe in Algorithm 1).

*Two images were unavailable due to broken URLS.

VM threshold at 0.8 and the TM threshold at 0.6. For SSCD,
we adopted settings from Hintersdorf et al. (2024) and Wen
et al. (2024), using a verbatim memorization (VM) thresh-
old of 0.7 and a template memorization (TM) threshold of
0.5. Classification performance is reported in Table 1.

Our results demonstrate that while SSCD effectively clas-
sifies verbatim and non-memorized samples, it exhibits vul-
nerability to localized dissimilarities. Specifically, SSCD
may fail to detect memorization when images contain small
differing regions despite being visually near-identical over-
all’> We also evaluated the accuracy-efficiency tradeoff
across metrics. On an NVIDIA A6000 GPU, comparing a
single generated image against 500 ground-truth training
images requires over 5 minutes using SSCD, compared to
only 24 seconds using MS-SSIM. This substantial compu-
tational advantage, combined with MS-SSIM’s robustness
to minor local variations, motivated our choice to build FB-
Mem upon MS-SSIM.

Memorized
Images

Generated Images

Figure 2: The memorized ground-truth image as well as the
images generated using 5 different prompts selected from
cluster O (i.e., the Shaw Floors cluster), in generation order.

5This aligns with recent findings by Chen et al. (2025), which
highlight SSCD’s vulnerability to local perturbations.



3.3 Measuring one-to-many correspondence

In Section 3.1, we note that existing methods neglect gen-
eration variations and only consider prompt-wise memo-
rization. Using our instance-wise pipeline and FB-Mem, we
observe an intriguing phenomenon of one-prompt-to-many-
training-images (one-to-many) correspondence. Specifi-
cally, we perform N = 5 generations per prompt and group
the results into 5 categories according to the number of
matched training images within the memorized dataset. For
each category, we count the occurrences of VM, FM, and
BM and present the results in Figure 3 (top). We observe that
a substantial number of prompts exhibit one-fo-many corre-
spondence, demonstrating a variety of memorization types
across generations from the same prompt.

Prompts Clustering: Moreover, we observe that one-fo-
many correspondence is not random but exhibits semantic
coherence around shared concepts. To quantify this behav-
ior, we first encode each prompt into an embedding using the
CLIP-ViT-B model, then apply K-Nearest Neighbors (KNN)
clustering to group the 500 prompts into 12 distinct clusters.
Figure 2 shows examples of five prompts sampled from the
same cluster and their corresponding generated images.®

Ablation Study on N: Finally, we conduct an ablation
study with an increased number of generated images per
prompt (N = 20) and present the results in Figure 3 (bot-
tom). We observe that prompts exhibiting one-to-one corre-
spondence remain roughly the same as with N = 5. How-
ever, when we increase IV, one-to-many correspondence can
extend up to 17 matching images, demonstrating the capa-
bility of diffusion models to memorize a large number of
training images within a single prompt.

4 Mitigating Memorization

In the previous section, we established a new memoriza-
tion pipeline, proposed FB-Mem for memorization evalua-
tion, and identified the phenomenon of one-fo-many corre-
spondence. In this section, we (1) examine existing model-
based mitigation methods under the FB-Mem framework;
(2) propose a cluster-wise mitigation approach; and (3) de-
sign a scoring metric for mitigation evaluation and analyze
the utility-quality tradeoff in post-mitigation models.

4.1 Clustering-based Mitigation

In the previous section, we observed the phenomenon of
one-to-many correspondence, which suggests that memo-
rization occurs at the concept level rather than the prompt
level. We therefore propose prompt clustering to quantify
this notion of concept. This approach naturally extends to
a stronger mitigation strategy, where we address clusters of
memorization collectively.

Specifically, we build upon NeMo (Hintersdorf et al.
2024), a prompt-wise mitigation approach due to its supe-
rior mitigation performance on prompt-wise mitigation and

SNotably, some generated images do not appear to be direct
copies of training data. Interestingly, when we increase the num-
ber of N in the next paragraph, we are able to generate replicates
of these images as well.
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Figure 3: Quantitative analysis of memorization in gen-
erated images measured by FB-Mem. The x-axis represents
the number of distinct ground-truth images matched using
each of the N images generated by each prompt, while the
y-axis indicates the number of generated images identified
as memorized by FB-Mem. Each generated image produces
exactly one match with one ground-truth image with the
highest similarity score. Non-Memorized images are not in-
cluded in the figure. Top: Default setting with NV = 5. Bot-
tom: Ablation study with NV = 20.

preserving utility. NeMo utilizes a two-step process: (1) ini-
tial selection: for each prompt in a cluster, NeMo identifies
a broad set of candidate neurons that may be responsible for
memorizing a specific training image; and (2) refinement:
NeMo filters the initial candidate set to obtain a smaller, re-
fined set of neurons for each prompt.

Our clustering-based mitigation approach (denoted as
NeMo-C) introduces a third step of aggregation: given a
memorized cluster, we compute the union of all refined neu-
ron sets across the cluster, resulting in a consolidated set
of neurons that consistently contribute to memorization. For
each prompt in the cluster, we deactivate all neurons in this
union set to mitigate memorization.

Unlike NeMo, which deactivates neurons specific to indi-
vidual prompts, NeMo-C performs mitigation using the ag-
gregated union set of neurons across the entire cluster. This
enables robust memorization mitigation, specifically target-
ing the one-to-many phenomenon described previously. In
Section 4.4, we demonstrate that NeMo-C does not signifi-
cantly decrease model utility compared to NeMo and other
mitigation methods. We present selected examples of gen-
erated images before and after applying NeMo-C, including



Generated Images (No Mitigation)

Generated Images (NeMo-C)

Figure 4: Examples of generated images before and af-
ter applying NeMo-C. The provided prompts, from top to
bottom, are: (1) ALPHA Convoy 320 Backpack - View 4; (2)
If Barbie Were the Face of the World’s Most Famous Paint-
ings; (3) Foyer Painted in WHITE; (4) Dreamfall Chapters:
The Longest Journey Will Be a PlayStation 4 Exclusive; (5)
Willy Wonka - Oh, you are in IB? Please tell me how much
smarter you are than everyone else.

failure cases where generated images remain verbatim mem-
orized post-mitigation, in Figure 4.

4.2 Mitigation Evaluation

Asides from FB-Mem, we propose two metrics to evaluate
memorization mitigation: the mitigation strength, quantified
by a novel scoring function, and image quality post mitiga-
tion which measures model utility.

Table 2: Mitigation Strength Scoring Function.

From FM

FM—BM +1.0
FM—NM +1.5

From VM \

VM—NM  +2.0
VM—BM +1.5

From BM \

BM—FM -0.5
BM—VM -15

VM—FM +0.5 | BM—NM +0.5 | FM—VM -0.5
From NM
NM—VM: -2.0 NM—FM: -1.5 NM—BM: -0.5

Mitigation Strength: To evaluate the effectiveness of
memorization mitigation methods, we introduce a scoring
function in Table 2 that quantifies the strength of mitiga-
tion based on memorization type transitions. Our scoring
system assigns numerical values to transitions between dif-
ferent memorization states: Verbatim Memorization (VM),
Background Memorization (BM), Foreground Memoriza-
tion (FM), and Not Memorized (NM). The scoring function
operates on the principle that transitions reducing memoriza-
tion severity receive positive scores, while those increasing
memorization or introducing new memorization patterns re-
ceive negative penalties.

Image Quality: We use Q-Align (Wu et al. 2024a) and
DB-CNN (Zhang et al. 2020) to evaluate the quality of im-
ages after applying memorization mitigation. Due to their
no-reference (NR) nature, both methods perform well even

with our relatively small sample size. Q-Align leverages
aligned Vision-Language models (VLM) to assess gener-
ation quality, while DB-CNN is based on Deep Bilinear
Convolutional Neural Network. Both methods were imple-
mented using the Image Quality Assessment (IQA) toolbox.

4.3 Experimental Settings

Baseline Methods: We consider three model-based mit-
igation methods: NeMo (Hintersdorf et al. 2024), Wanda
(Chavhan et al. 2024),” and DetectMem (Wen et al. 2024).
All mitigation methods are applied using their default hyper-
parameters as specified in the respective papers. For NeMo,
we use an activation threshold of 0.428 to determine which
neurons to deactivate for each of the 500 prompts. This
threshold corresponds to the mean plus one standard devi-
ation of pairwise SSIM scores between initial noise differ-
ences, measured on a holdout set of 50,000 LAION prompts.
The number of deactivated neurons varies across prompts,
ranging from O to 436. For Wanda, the sparsity threshold
(i.e., the percentage of pruned neurons) is set to 1%. For De-
tectMem, we evaluate both training-time and inference-time
mitigation approaches. The training-time mitigation uses the
pre-fine-tuned SD v1.4 model provided by the authors. For
inference-time mitigation, we use the default configuration
with a target loss of 3.

Evaluation Pipeline: We use the 500 memorized prompts
from Webster (2023) as our pre-mitigation benchmark. Us-
ing Stable Diffusion v1.4, we generate five images per
prompt using one random seed without applying any miti-
gation techniques, following the same settings described in
Section 3. We then apply various mitigation methods, in-
cluding baseline methods and our NeMo-C method, and re-
generate five images per prompt under each method. Each
generated image is compared to all 498 of the retriev-
able memorized images, resulting in a total of 1,245,000
comparisons. Additionally, we include (1) FB-Mem results
for 500 randomly selected LAION prompts from the non-
memorized set, generating 5 images per prompt as well as
(2) 2500 images generated using the state-of-the-art Stable
Diffusion 3 model using the 500 memorized prompts.

4.4 Experimental Results

Memorization distribution under FB-Mem: We first
evaluate the effectiveness of each mitigation method using
the FB-Mem metric. As shown in Figure 5, most methods are
highly effective at reducing verbatim memorization (VM),
eliminating over 90% of such cases. However, while back-
ground memorization (BM) is largely alleviated, foreground
memorization (FM) persists. Notably, we examine the mem-
orized prompts on Stable Diffusion 3 and observe that mem-
orization does not exhibit significantly even without mitiga-
tion,® matching the observations of Hintersdorf et al. (2024).

"Note that Wanda was originally proposed by Sun et al. (2023)
for large language models, while we utilize its adaptation for diffu-
sion models as presented in Chavhan et al. (2024).

8We acknowledge that this might be because the memorized
prompts differ significantly across different versions of Stable Dif-
fusion, a problem we aim to study systematically in future work.
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and NeMo-C achieve the best image quality. Moreover, we
present the trade-off between mitigation strength and util-
ity degradation in Figure 7, where NeMo-C emerges as the
optimal mitigation method.

0.859 ® NeMo
1 Detect Mem
o
o 0.80- Wanda
A NeMo-C
c
S 0.75-
= °
©
2
=
s 0.70-
[
0.65 T T T T 1
0 5 10 15 20 25

Utility Drop (%)

Figure 7: Trade-off between utility and mitigation efficacy.
The y-axis shows the mitigation score (higher is better),
while the x-axis indicates the drop in image quality com-
pared to the non-mitigated baseline (lower is better). Utility
drop is calculated using the two methods shown in Table 3.

Table 3: Model performance assessed by image quality met-
rics before/after mitigation. The reported scores are com-
puted for all 2,500 generated images and averaged.

Mitigation Method DB-CNN  Q-Align
Pre-mitigation 0.60 4.02
NeMo 0.587 3.63
Detect Mem 0.449 341
Wanda 0.578 3.55
NeMo-C 0.586 3.52

Figure 6: One-to-many correspondence after applying miti-
gation methods, measured using FB-Mem.

Moreover, in Figure 6, we demonstrate that one-to-many
correspondence still largely persists across methods, with
NeMo-C showing slight improvements over baselines.

Mitigation strength: Although the memorization distri-
bution analysis provides insights into post-mitigation re-
sults, it fails to capture the memorization transitions induced
by different mitigation methods. To address this, we cal-
culate the average mitigation score (across 2,500 images,
higher scores indicate better performance) for each method
according to the scoring function in Table 2. The results are:
NeMo (0.74), DetectMem (0.67), Wanda (0.79), and NeMo-
C (0.83). We observe that NeMo-C achieves the highest
mitigation strength, demonstrating the effectiveness of our
concept-wise clustering approach.

Utility trade-off: Finally, a key evaluation criterion for
mitigation methods is performance preservation. In Table 3,
we report the average quality of generated images after ap-
plying mitigation methods. Among all approaches, NeMo

5 Conclusion

In this work, we addressed critical limitations in mem-
orization detection for DMs by proposing FB-Mem, a
segmentation-based metric that provides fine-grained clas-
sification of memorized content. Our analysis revealed
that memorization is fundamentally cluster-wise rather than
prompt-wise, with individual generations incorporating con-
tent from multiple training images simultaneously. Using the
FB-Mem framework, we demonstrated that existing mitiga-
tion methods fail to eliminate local memorization, particu-
larly in foreground regions. Our proposed NeMo-C cluster-
wise mitigation approach achieves more robust memoriza-
tion reduction while maintaining model utility.

Our work establishes a proper measurement of the mem-
orization pipeline of DMs and opens new directions, such as
extending these findings to other generative modalities like
large language models and developing more sophisticated
semantic-based clustering and mitigation strategies regard-
ing foreground memorization.
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A More Related Works

Note that a simultaneous and independent work (Yarkoni and Livni 2025) also studies template memorization of diffusion
models, and we discuss its connection to our paper. Specifically, Yarkoni and Livni (2025) utilizes segmentation masking for
searching near-duplicates, while our FB-Mem apply a segmentation-based metric to quantify partial memorization. Moreover,
the paper observes that a single generated image may match multiple copied elements from different sources, further confirming
our finding of one-to-many correspondence.

B SSIM and Multiscale-SSIM

First, we provide a brief overview of the Structural Similarity Index (SSIM) (Wang et al. 2004) and the improved Mul-
tiscale Structural Similarity Index (MS-SSIM) (Wang, Simoncelli, and Bovik 2003). Let m = {m;|i=1,2,..., N} and
n = {n;|i =1,2,..., N} be two pixel groups extracted from the same spatial location from two images being compared,
and i, Ufn and omp be the mean of m, variation of m, and the covariance of m and n, respectively. Then, the standard SSIM
score is calculated by looking at the luminance (1), contrast (c), and structure (s) as follows:

2

I(m,n) = Q/‘L’jcl
Hm T Hp +C1
20m0n + Co

c(mn) = 5—————
Ogn + On +C2
Omn + Cc3

s(myn) = —
OmOn + C3

where c1, co, and c3 are small constants to stabilize the division with a weak denominator. With three components set to equal
importance, we obtain the SSIM score:

(2imfin + €1)(20mn + c2)
(Mg + p3 +e1)(od, + 02+ c2)

SSIM(m,n) =

Furthermore, by performing multiple re-scaling and down-sampling procedures to the contrast component and structural
component using a scaling factor j, we can obtain a more robust form of SSIM. Let 1 be the scale of the original images and
Scale K be the maximum scale, the Multi-scale Similarity Index is obtained through:

K
SSIM(m, n) = [Ix (m, n)]o‘M'H [cj(m, n)]ﬁj [s;(m,n)]" .

In practice, the relative importance hyperparameter «, 5, and ~ are normalized and set equal at all values of j.

C Additional Experiments
C.1 Ablation Study on N

In this section, we provide additional details and example images from the ablation study where the number of generations per
prompt N is increased to 20.

Experiment Setting: Following the pre-mitigation experiments in Section 3, we use the same 500 memorized prompts from
Webster (2023). Using Stable Diffusion v1.4 with a fixed random seed, we generate N = 20 images per prompt without
applying any mitigation techniques.

Clustering Example: Figure 8 shows 20 images generated for six prompts from the Shaw Floors cluster. The first five
prompts (rows 1-5) and their corresponding first five outputs were previously shown in Figure 2. Notably, prompts 1-6 each
produce nearly identical images beyond the initial five generations, maintaining the same sequential order. This observation
provides strong evidence that the model clusters semantically similar training prompts and offers insights into how diffusion
models internalize and reproduce content from their training data.

C.2 NeMo-C with a Dampening Factor

For both NeMo (Hintersdorf et al. 2024) and our proposed NeMo-C method (described in Section 4.1), the refined set of neurons
in the U-Net is completely deactivated. An alternative approach is to dampen these neurons rather than fully deactivating them.
Specifically, we apply a multiplicative dampening factor cugamp. In this section, we explore the effect of using such a dampening
mechanism, experimenting with values agamp = 0.1 and 0.2. We hypothesize that this approach may improve the visual quality
of the generated images—Dby retaining some informative signal from the suppressed neurons—while partially sacrificing the
mitigation strength compared to the original NeMo-C.



Table 4: Model performance assessed by mitigation efficacy and image quality metrics after applying mitigation with varying
dampening factor @ qqmp. When agamp = 0, we obtain the standard NeMO-C method described in the main paper.The reported
mitigation score is calculated by aggregating 2500 scores using the method outlined in Table 2. The reported quality scores are
computed for all 2,500 generated images and averaged.

Dampening Factor (cvgqmp)  Mitigation Score  Image Quality (DB-CNN)

0 (NeMo-C) 0.83 0.586
0.1 0.81 0.588
0.2 0.797 0.590

The results presented in Table 4 are consistent with our hypothesis. As the dampening factor increases, the image quality,
measured by DB-CNN score, improves slightly, indicating that partial retention of neuron activations may help preserve useful
generative capacity. However, this improvement in quality comes at the cost of a modest reduction in mitigation effectiveness.
These findings suggest that dampening offers a tunable trade-off between mitigation strength and image fidelity, providing a
flexible alternative to hard neuron deactivation.

D Generated Examples

In this section, we present additional examples of generated images along with their corresponding memorized training images
and prompts, as shown in Figure 9. These examples include both successful mitigation cases and failure cases where NeMo-C
fails to eliminate memorization.

The examples demonstrate that memorization can be harmful in several ways: (1) it reduces the diversity of generated
outputs (rows 4-06); (2) it can lead to inaccurate generations that contradict prompt specifications (e.g., row 7, where the prompt
explicitly requests a white foyer but the output displays blue or green tones); and (3) it raises potential copyright concerns (rows
2 and 8) as the generated images closely resemble artistic works by human creators used in games or other media.

However, memorization may sometimes benefit the model by generating highly accurate or detailed outputs that align well
with user prompts—particularly when the underlying content is in the public domain, as illustrated in the final row. This dual
nature of memorization highlights a promising direction for future research: developing methods to distinguish between harmful
and benign memorization in diffusion models, similar to the approach taken by Aerni et al. (2024) for language models.

E Manual Labeling

As discussed in Section 3 of the main paper, existing methods are insufficient for accurately distinguishing between different
types of memorization. This limitation motivates our proposed approach, FB-Mem. To rigorously evaluate the effectiveness
of this method, it is essential to establish reliable ground-truth labels that reflect human perception. Therefore, we manually
labeled the images generated from memorized prompts (without applying mitigation techniques) and used these labels as the
ground truth for our classification experiments in the main paper.

Labeling Procedure. We adopt a conservative approach when identifying verbatim memorization (VM)—an image is labeled
as VM only if it is visually identical to its corresponding training image. For template memorization (TM), we consider both
locally similar and dissimilar regions, as well as the overall visual style, following the examples illustrated in Figure Figure 10.
Each generated image is manually compared to up to ten of the most visually similar memorized images, as retrieved by BF-
Mem and scored using SSCD, before reaching a labeling decision. Due to the time-intensive nature of this process, we labeled
only the first 1,500 generated images, which we consider a sufficient sample for reliable evaluation.
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Figure 8: Twenty images generated across six different prompts selected from the Shaw Floors clusters.
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Figure 9: Distribution of generated more images before and after applying mitigation methods
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Figure 10: Examples of manual classification for different reference images. For the reference image in row 2, no VM example
was found.



