
Published as a conference paper at ICLR 2021

CAPC LEARNING: CONFIDENTIAL AND PRIVATE
COLLABORATIVE LEARNING

Christopher A. Choquette-Choo∗, Natalie Dullerud∗, Adam Dziedzic∗
University of Toronto and Vector Institute
{christopher.choquette.choo,natalie.dullerud}@mail.utoronto.ca
ady@vectorinstitute.ai

Yunxiang Zhang∗†
The Chinese University of Hong Kong
yunxiang.zhang@ie.cuhk.edu.hk

Somesh Jha‡
University of Wisconsin-Madison and XaiPient
jha@cs.wisc.edu

Nicolas Papernot‡
University of Toronto and Vector Institute
nicolas.papernot@utoronto.ca

Xiao Wang‡
Northwestern University
wangxiao@cs.northwestern.edu

ABSTRACT

Machine learning benefits from large training datasets, which may not always be
possible to collect by any single entity, especially when using privacy-sensitive
data. In many contexts, such as healthcare and finance, separate parties may
wish to collaborate and learn from each other’s data but are prevented from doing
so due to privacy regulations. Some regulations prevent explicit sharing of data
between parties by joining datasets in a central location (confidentiality). Others
also limit implicit sharing of data, e.g., through model predictions (privacy). There
is currently no method that enables machine learning in such a setting, where
both confidentiality and privacy need to be preserved, to prevent both explicit
and implicit sharing of data. Federated learning only provides confidentiality, not
privacy, since gradients shared still contain private information. Differentially
private learning assumes unreasonably large datasets. Furthermore, both of these
learning paradigms produce a central model whose architecture was previously
agreed upon by all parties rather than enabling collaborative learning where each
party learns and improves their own local model. We introduce Confidential and
Private Collaborative (CaPC) learning, the first method provably achieving both
confidentiality and privacy in a collaborative setting. We leverage secure multi-
party computation (MPC), homomorphic encryption (HE), and other techniques in
combination with privately aggregated teacher models. We demonstrate how CaPC
allows participants to collaborate without having to explicitly join their training sets
or train a central model. Each party is able to improve the accuracy and fairness
of their model, even in settings where each party has a model that performs well
on their own dataset or when datasets are not IID and model architectures are
heterogeneous across parties.1

1 INTRODUCTION

The predictions of machine learning (ML) systems often reveal private information contained in their
training data (Shokri et al., 2017; Carlini et al., 2019) or test inputs. Because of these limitations,
legislation increasingly regulates the use of personal data (Mantelero, 2013). The relevant ethical

∗Equal contributions, authors ordered alphabetically.
†Work done while the author was at Vector Institute.
‡Equal contributions, authors ordered alphabetically.
1Code is available at: https://github.com/cleverhans-lab/capc-iclr.

1

ar
X

iv
:2

10
2.

05
18

8v
2

 [
cs

.L
G

]
 1

9
M

ar
 2

02
1

https://github.com/cleverhans-lab/capc-iclr

Published as a conference paper at ICLR 2021

Pi
*

P1

Pn

..
.

Send
encrypted

query Enc(q)

M1

Mn

Enc(q)

Enc(q)

Enc(r1)

Enc(rn)

Output
logits

Output
logits

Generate random vector

Generate random vector

r1̂

r̂n

Send
Enc(ri - r̂i)

r̂1

r̂n

Decrypt

(r1- r̂1)

(rn- r̂n)

. . .

Garbled circuit: argmax of logits
One-hot(𝑎𝑟𝑔𝑚𝑎𝑥[(ri - r̂i)+ r̂i])

= si + ŝi

s1

ŝ1

ŝn

sn

Content Service Provider

𝑖=1

𝑛

ŝi

𝑖=1

𝑛

si

Garbled circuit: argmax sum of shares

𝑎𝑟𝑔𝑚𝑎𝑥[

𝑖=1

𝑛

si + ŝi + 𝐷𝑃𝑁𝑜𝑖𝑠𝑒 𝜀]

Add Laplacian /
Gaussian noise

𝑖=1

𝑛

ŝi + 𝐷𝑃 𝑁𝑜𝑖𝑠𝑒(𝜀)

Label

. . .

YS
Y1 Yn

. . .

Querying Party

Answering Parties

1a 1b

1c

2

3

Figure 1: Confidential and Private Collaborative (CaPC) Learning Protocol: 1a Querying party Pi∗ sends
encrypted query q to each answering party Pi, i 6= i∗. Each Pi engages in a secure 2-party computation protocol
to evaluate Enc(q) onMi and outputs encrypted logits Enc(ri). 1b Each answering party, Pi, generates a

random vector r̂i, and sends Enc(ri − r̂i) to the querying party, Pi∗ , who decrypts to get ri − r̂i. 1c Each
answering party Pi runs Yao’s garbled circuit protocol (Yi) with querying party Pi∗ to get si for Pi∗ and ŝi for
Pi s.t. si + ŝi is the one-hot encoding of argmax of logits. 2 Each answering party sends ŝi to the privacy
guardian (PG). The PG sums ŝi from each Pi and adds Laplacian or Gaussian noise for DP. The querying party
sums si from each Yi computation. 3 The PG and the querying party run Yao’s garbled circuit Ys to obtain
argmax of querying party and PG’s noisy share. The label is output to the querying party.

concerns prompted researchers to invent ML algorithms that protect the privacy of training data and
confidentiality of test inputs (Abadi et al., 2016; Konečnỳ et al., 2016; Juvekar et al., 2018).

Yet, these algorithms require a large dataset stored either in a single location or distributed amongst
billions of participants. This is the case for example with federated learning (McMahan et al., 2017).
Prior algorithms also assume that all parties are collectively training a single model with a fixed
architecture. These requirements are often too restrictive in practice. For instance, a hospital may
want to improve a medical diagnosis for a patient using data and models from other hospitals. In
this case, the data is stored in multiple locations, and there are only a few parties collaborating.
Further, each party may also want to train models with different architectures that best serve their
own priorities.

We propose a new strategy that lets fewer heterogeneous parties learn from each other collaboratively,
enabling each party to improve their own local models while protecting the confidentiality and privacy
of their data. We call this Confidential and Private Collaborative (CaPC) learning.

Our strategy improves on confidential inference (Boemer, 2020) and PATE, the private aggregation of
teacher ensembles (Papernot et al., 2017). Through structured applications of these two techniques,
we design a strategy for inference that enables participants to operate an ensemble of heterogeneous
models, i.e. the teachers, without having to explicitly join each party’s data or teacher model at a single
location. This also gives each party control at inference, because inference requires the agreement
and participation of each party. In addition, our strategy provides measurable confidentiality and
privacy guarantees, which we formally prove. We use the running example of a network of hospitals
to illustrate our approach. The hospitals participating in CaPC protocol need guarantees on both
confidentiality (i.e., data from a hospital can only be read by said hospital) and privacy (i.e., no
hospital can infer private information about other hospitals’ data by observing their predictions).

First, one hospital queries all the other parties over homomorphic encryption (HE), asking them
to label an encrypted input using their own teacher models. This can prevent the other hospitals
from reading the input (Boemer et al., 2019), an improvement over PATE, and allows the answering
hospitals to provide a prediction to the querying hospital without sharing their teacher models.

The answering hospitals use multi-party computation (MPC) to compute an aggregated label, and add
noise during the aggregation to obtain differential privacy guarantees (Dwork et al., 2014). This is
achieved by a privacy guardian (PG), which then relays the aggregated label to the querying hospital.
The PG only needs to be semi-trusted: we operate under the honest-but-curious assumption. The use
of MPC ensures that the PG cannot decipher each teacher model’s individual prediction, and the noise
added via noisy argmax mechanism gives differential privacy even when there are few participants.

2

Published as a conference paper at ICLR 2021

This is a significant advantage over prior decentralized approaches like federated learning, which
require billions of participants to achieve differential privacy, because the sensitivity of the histogram
used in our aggregation is lower than that of the gradients aggregated in federated learning. Unlike
our approach, prior efforts involving few participants thus had to prioritize model utility over privacy
and only guarantee confidentiality (Sheller et al., 2020).

Finally, the querying hospital can learn from this confidential and private label to improve their local
model. Since the shared information is a label rather than a gradient, as used by federated learning,
CaPC participants do not need to share a common model architecture; in fact, their architectures can
vary throughout the participation in the protocol. This favors model development to a degree which
is not possible in prior efforts such as federated learning.

We show how participants can instantiate various forms of active and online learning with the labels
returned by our protocol: each party participating in the CaPC protocol may (a) identify deficiencies
of its model throughout its deployment and (b) finetune the model with labels obtained by interacting
with other parties. Intuitively, we achieve the analog of a doctor querying colleagues for a second
opinion on a difficult diagnostic, without having to reveal the patient’s medical condition. This
protocol leads to improvements in both the accuracy and fairness (when there is a skew in the data
distribution of each participating hospital) of model predictions for each of the CaPC participants.

To summarize, our contributions are the following:

• We introduce CaPC learning: a confidential and private collaborative learning platform that
provides both confidentiality and privacy while remaining agnostic to ML techniques.

• Through a structured application of homomorphic encryption, secure MPC, and private
aggregation, we design a protocol for CaPC. We use two-party deep learning inference and
design an implementation of the noisy argmax mechanism with garbled circuits.

• Our experiments on SVHN and CIFAR10 demonstrate that CaPC enables participants to
collaborate and improve the utility of their models, even in the heterogeneous setting where
the architectures of their local models differ, and when there are only a few participants.

• Further, when the distribution of data drifts across participating parties, we show that CaPC
significantly improves fairness metrics because querying parties benefit from knowledge
learned by other parties on different data distributions, which is distilled in their predictions.

• We release the source code for reproducing all our experiments.

2 BACKGROUND

Before introducing CaPC, we first go over elements of cryptography and differential privacy that are
required to understand it. Detailed treatment of these topics can be found in Appendices A and B.

2.1 CRYPTOGRAPHIC PRELIMINARIES FOR CONFIDENTIALITY

The main cryptographic tool used in CaPC is secure multi-party computation (MPC) (Yao, 1986).
MPC allows a set of distrusting parties to jointly evaluate a function on their input without revealing
anything beyond the output. In general, most practical MPC protocols can be classified into two cate-
gories: 1) generic MPC protocols that can compute any function with the above security goal (Malkhi
et al., 2004); and 2) specialized MPC protocols that can be used to compute only selected functions
(e.g., private set intersection (Pinkas et al., 2020), secure machine learning (Mohassel & Zhang,
2017)). Although specialized MPC protocols are less general, they are often more efficient in execu-
tion time. Protocols in both categories use similar cryptographic building blocks, including (fully)
homomorphic encryption (Gentry, 2009), secret sharing (Shamir, 1979), oblivious transfer (Rabin,
2005), garbled circuits (Yao, 1986). To understand our protocol, it is not necessary to know all
details about these cryptographic building blocks and thus we describe them in Appendix A.1. Our
work uses these cryptographic preliminaries for secure computation at prediction time, unlike recent
approaches, which explore new methods to achieving confidentiality at training time (Huang et al.,
2020a;b).

The cryptographic protocol designed in this paper uses a specialized MPC protocol for securely
evaluating a private ML model on private data, and a generic two-party computation protocol to

3

Published as a conference paper at ICLR 2021

compute an argmax in different forms. For the generic two-party computation, we use a classical Yao’s
garbled-circuit protocol that can compute any function in Boolean circuit. For secure classification
of neural networks, our protocol design is flexible to work with most existing protocols (Boemer
et al., 2020; 2019; Gilad-Bachrach et al., 2016; Mishra et al., 2020). Most existing protocols are
different in how they handle linear layers (e.g. convolution) and non-linear layers (e.g. ReLU). For
instance, one can perform all computations using a fully homomorphic encryption scheme resulting
in low communication but very high computation, or using classical MPC techniques with more
communication but less computation. Other works (Juvekar et al., 2018) use a hybrid of both and
thus enjoy further improvement in performance (Mishra et al., 2020). We discuss it in more details in
Appendix A.2.

2.2 DIFFERENTIAL PRIVACY

Differential privacy is the established framework for measuring the privacy leakage of a randomized
algorithm (Dwork et al., 2006). In the context of machine learning, it requires the training algorithm
to produce statistically indistinguishable outputs on any pair of datasets that only differ by one data
point. This implies that an adversary observing the outputs of the training algorithm (e.g., the model’s
parameters, or its predictions) can improve its guess at most by a bounded probability when inferring
properties of the training data points. Formally, we have the following definition.

Definition 1 (Differential Privacy). A randomized mechanism M with domain D and range R
satisfies (ε, δ)-differential privacy if for any subset S ⊆ R and any adjacent datasets d, d′ ∈ D, i.e.
‖d− d′‖1 ≤ 1, the following inequality holds:

Pr [M(d) ∈ S] ≤ eεPr [M(d′) ∈ S] + δ (1)

In our work, we obtain differential privacy by post-processing the outputs of an ensemble of models
with the noisy argmax mechanism of Dwork et al. (2014) (for more details on differential privacy,
please refer to Appendix B), à la PATE (Papernot et al., 2017). We apply the improved analysis
of PATE (Papernot et al., 2018) to compute the privacy guarantees obtained (i.e., a bound on ε).
Our technique differs from PATE in that each of the teacher models is trained by different parties
whereas PATE assumes a centralized learning setting where all of the training and inference is
performed by a single party. Note that our technique is used at inference time, which differs from
recent works in differential privacy that compare neuron pruning during training with mechanisms
satisfying differential privacy (Huang et al., 2020c). We use cryptography to securely decentralize
computations.

3 THE CAPC PROTOCOL

We now introduce our protocol for achieving both confidentiality and privacy in collaborative (CaPC)
learning. To do so, we formalize and generalize our example of collaborating hospitals from Section 1.

3.1 PROBLEM DESCRIPTION

A small number of parties {Pi}i∈[1,K], each holding a private dataset Di = {(xj , yj or∅)j∈[1,Ni]}
and capable of fitting a predictive modelMi to it, wish to improve the utility of their individual
models via collaboration. Due to the private nature of the datasets in question, they cannot directly
share data or by-products of data (e.g., model weights) with each other. Instead, they will collaborate
by querying each other for labels of the inputs about which they are uncertain. In the active learning
paradigm, one party Pi∗ poses queries in the form of data samples x and all the other parties {Pi}i 6=i∗
together provide answers in the form of predicted labels ŷ. Each model {Mi}i∈[1,K] can be exploited
in both the querying phase and the answering phase, with the querying party alternating between
different participants {Pi}i∈[1,K] in the protocol.

Threat Model. To obtain the strong confidentiality and privacy guarantees that we described, we
require a semi-trusted third party called the privacy guardian (PG). We assume that the PG does
not collude with any party and that the adversary can corrupt any subset of C parties {Pi}i∈[1,C].
When more than one party gets corrupted, this has no impact on the confidentiality guarantee, but
the privacy budget obtained ε will degrade by a factor proportional to C because the sensitivity of
the aggregation mechanism increases (see Section 3.3). We work in the honest-but-curious setting, a

4

Published as a conference paper at ICLR 2021

commonly adopted assumption in cryptography which requires the adversary to follow the protocol
description correctly but will try to infer information from the protocol transcript.

3.2 CAPC PROTOCOL DESCRIPTION

Our protocol introduces a novel formulation of the private aggregation of teachers, which implements
two-party confidential inference and secret sharing to improve upon the work of Papernot et al. (2017)
and guarantee confidentiality. Recall that the querying party Pi∗ initiates the protocol by sending
an encrypted input x to all answering parties Pi, i 6= i∗. We use sk and pk to denote the secret and
public keys owned by party Pi∗ . The proposed protocol consists of the following steps:

1. For each i 6= i∗, Pi (with model parametersMi as its input) and Pi∗ (with x, sk, pk as its input)
run a secure two-party protocol. As the outcome, Pi obtains ŝi and Pi∗ obtains si such that
si + ŝi = OneHot(arg max(ri)) where ri are the predicted logits.
This step could be achieved by the following:

a) Pi∗ and Pi run a secure two-party ML classification protocol such that Pi∗ learns nothing
while Pi learns Encpk(ri), where ri are the predicted logits.

b) Pi generates a random vector r̂i , performs the following computation on the encrypted data
Encpk(ri)− Encpk(r̂i) = Encpk(ri − r̂i), and sends the encrypted difference to Pi∗ , who
decrypts and obtains (ri − r̂i).

c) Pi (with r̂i as input) and Pi∗ (with ri − r̂i as input) engage in Yao’s two-party garbled-
circuit protocol to obtain vector si for Pi∗ and vector ŝi for Pi, such that si + ŝi =
OneHot(arg max(ri)).

2. Pi sends ŝi to the PG. The PG computes ŝ =
∑
i 6=i∗ ŝi + DPNoise(ε), where DPNoise() is

element-wise Laplacian or Gaussian noise whose variance is calibrated to obtain a desired differ-
ential privacy guarantee ε; whereas Pi∗ computes s =

∑
i6=i∗ si.

3. The PG and Pi∗ engage in Yao’s two-party garbled-circuit protocol for computing the argmax:
Pi∗ gets arg max(ŝ + s) and the PG gets nothing.

Next, we elaborate on the confidentiality and privacy guarantees achieved by CaPC.

3.3 CONFIDENTIALITY AND DIFFERENTIAL PRIVACY GUARANTEES

Confidentiality Analysis. We prove in Appendix E that the above protocol reveals nothing to Pi
or the PG and only reveals the final noisy results to Pi∗ . The protocol is secure against a semi-honest
adversary corrupting any subset of parties. Intuitively, the proof can be easily derived based on the
security of the underlying components, including two-party classification protocol, secret sharing,
and Yao’s garbled circuit protocol. As discussed in Section 4.1 and Appendix A.1, for secret sharing
of unbounded integers, we need to make sure the random padding is picked from a domain much
larger than the maximum possible value being shared. Given the above, a corrupted Pi∗ cannot learn
anything aboutMi of the honest party due to the confidentiality guarantee of the secure classification
protocol; similarly, the confidentiality of x against corrupted Pi is also protected. Intermediate values
are all secretly shared (and only recovered within garbled circuits) so they are not visible to any party.

Differential Privacy Analysis. Here, any potential privacy leakage in terms of differential privacy
is incurred by the answering parties {Pi}i6=i∗ for their datasets {Di}i 6=i∗ , because these parties
share the predictions of their models. Before sharing these predictions to Pi∗ , we follow the PATE
protocol: we compute the histogram of label counts ŷ, then add Laplacian or Gaussian noise using a
sensitivity of 1, and finally return the argmax of ŷσ to Pi∗ . Since Pi∗ only sees this noisily aggregated
label, both the data-dependent and data-independent differential privacy analysis of PATE apply to
Pi∗ (Papernot et al., 2017; 2018). Thus, when there are enough parties with high consensus, we
can obtain a tighter bound on the privacy budget ε as the true plurality will more likely be returned
(refer to Appendix B for more details on how this is achieved in PATE). This setup assumes that only
one answering party can be corrupted. If instead C parties are corrupted, the sensitivity of the noisy
aggregation mechanism will be scaled by C and the privacy guarantee will deteriorate. There is no
privacy leakage to the PG; it does not receive any part of the predictions from {Pi}i 6=i∗ .

5

Published as a conference paper at ICLR 2021

4 EXPERIMENTS

CaPC aims to improve the model utility of collaborating parties by providing them with new labelled
data for training their respective local models. Since we designed the CaPC protocol with techniques
for confidentiality (i.e., confidential inference and secret sharing) and differential privacy (i.e., private
aggregation), our experiments consider the following three major dimensions:

1. How well does collaboration improve the model utility of all participating parties?
2. What requirements are there to achieve privacy and how can these be relaxed under different

circumstances? What is the trade-off between the privacy and utility provided by CaPC?
3. What is the resulting computational cost for ensuring confidentiality?

4.1 IMPLEMENTATION

We use the HE-transformer library with MPC (MP2ML) by Boemer (2020) in step 1a of our protocol
for confidential two-party deep learning inference. To make our protocol flexible to any private
inference library, not just those that return the label predicted by the model (HE-transformer only
returns logits), we incorporate steps 1b and 1c of the protocol outside of the private inference
library. The EMP toolkit (Wang et al., 2016) for generic two-party computation is used to compute
the operations including argmax and sum via the garbled circuits. To secret share the encrypted
values, we first convert them into integers over a prime field according to the CKKS parameters, and
then perform secret sharing on that domain to obtain perfect secret sharing. We use the single largest
logit value for eachMi obtained on its training set Di in plain text to calculate the necessary noise.

4.2 EVALUATION SETUP

Collaboration. We use the following for experiments unless otherwise noted. We uniformly sample
from the training set in use2, without replacement, to create disjoint partitions, Di, of equal size
and identical data distribution for each party. We select K = 50 and K = 250 as the number of
parties for CIFAR10 and SVHN, respectively (the number is larger for SVHN because we have more
data). We select Q = 3 querying parties, Pi∗ , and similarly divide part of the test set into Q separate
private pools for each Pi∗ to select queries, until their privacy budget of ε is reached (using Gaussian
noise with σ = 40 on SVHN and 7 on CIFAR10). We are left with 1, 000 and 16, 032 evaluation
data points from the test set of CIFAR10 and SVHN, respectively. We fix ε = 2 and 20 for SVHN
and CIFAR10, respectively (which leads to ≈ 550 queries per party), and report accuracy on the
evaluation set. Querying models are retrained on their Di plus the newly labelled data; the difference
in accuracies is their accuracy improvement.

We use shallower variants of VGG, namely VGG-5 and VGG-7 for CIFAR10 and SVHN, respec-
tively, to accommodate the small size of each party’s private dataset. We instantiate VGG-7 with 6
convolutional layers and one final fully-connected layer, thus there are 7 functional layers overall.
Similarly, VGG-5 has 4 convolutional layers followed by a fully connected layer. The ResNet-10
architecture starts with a single convolutional layer, followed by 4 basic blocks with 2 convolutional
layers in each block, and ends with a fully-connected layer, giving 10 functional layers in total. The
ResNet-8 architecture that we use excludes the last basic block and increases the number of neurons
in the last (fully-connected) layer. We present more details on architectures in Appendix F.2.

We first train local models for all parties using their non-overlapping private datasets. Next, we
run the CaPC protocol to generate query-answer pairs for each querying party. Finally, we retrain
the local model of each querying party using the combination of their original private dataset and
the newly obtained query-answer pairs. We report the mean accuracy and class-specific accuracy
averaged over 5 runs for all retrained models, where each uses a different random seed.

Heterogeneity and Data Skew. Where noted, our heterogeneous experiments (recall that this is a
newly applicable setting that CaPC enables) use VGG-7, ResNet-8 and ResNet-10 architectures for
K
3 parties, each. One model of each architecture is used for each of Q = 3 querying parties. Our data

skew experiments use 80% less data samples for the classes ‘horse’, ‘ship’, and ‘truck’ on CIFAR10
and 90% less data for the classes 1 and 2 on SVHN. In turn, unfair ML algorithms perform worse on

2For the SVHN dataset, we combine its original training set and extra set to get a larger training set.

6

Published as a conference paper at ICLR 2021

these specific classes, leading to worse balanced accuracy (see Appendix D). We adopt balanced
accuracy instead of other fairness metrics because the datasets we use have no sensitive attributes,
making them inapplicable. We employ margin, entropy, and greedy k-center active learning strategies
(described in Appendix C) to encourage ML algorithms to sample more queries from regimes that
have been underrepresented and to improve their fairness performance.

4.3 COLLABORATION ANALYSIS

We first investigate the benefits of collaboration for improving each party’s model performance
in several different settings, namely: homogeneous and heterogeneous model architectures across
querying and answering parties, and uniform and non-uniform data sampling for training data. From
these experiments, we observe: increased accuracy in both homogeneous settings and heterogeneous
settings to all model architectures (Section 4.3.1) and improved balanced accuracy when there is data
skew between parties, i.e., non-uniform private data (Section 4.3.2).

4.3.1 UNIFORMLY SAMPLED PRIVATE DATA

The first setting we consider is a uniform distribution of data amongst the parties—there is no data
drift among parties. Our set up for the uniform data distribution experiments is detailed in Section 4.2.
We evaluate the per-class and overall accuracy before and after CaPC in both homogeneous and
heterogeneous settings on the CIFAR10 and SVHN datasets.

In Figure 2, we see there is a consistent increase in accuracy for each class and overall in terms
of mean accuracy across all parties on the test sets. We observe these improvements in both the
homogeneous and heterogeneous settings for both datasets tested. As demonstrated in Figure 2, there
is a greater climb in mean accuracy for the heterogeneous setting than the homogeneous setting on
SVHN. Figures 5, 6, and 7 provide a breakdown of the benefits obtained by each querying party.
We can see from these figures that all querying parties observe an increase in overall accuracy in
heterogeneous and homogeneous settings with both datasets; additionally, the jump in accuracy
is largely constant between different model architectures. In only 6.67% of all cases were any
class-specific accuracies degraded, but they still showed a net increase in overall model accuracy.

plane car bird cat deer dog frog horse ship truck
Classes

40

50

60

70

80

90

Ac
cu

ra
cy

CIFAR10, Homogeneous

Stage
Before CaPC
After CaPC

0 1 2 3 4 5 6 7 8 9
Classes

65

70

75

80

85

90

95

SVHN, Homogeneous

0 1 2 3 4 5 6 7 8 9
Classes

55

60

65

70

75

80

85

90

95

SVHN, Heterogeneous

Figure 2: Using CaPC to improve model performance. Dashed lines represent mean accuracy.
With homogeneous models, we observe a mean increase of 4.09 and of 1.92 percentage points on
CIFAR10 and SVHN, respectively, and an increase of 2.64 with heterogeneous models; each party
still sees improvements despite differing model architectures (see Figure 7 in Appendix F).

4.3.2 NON-UNIFORMLY SAMPLED PRIVATE DATA

In this section, we focus our analysis on two types of data skew between parties: varying size of data
per class and total size of data provided; the setup is described in Section 4.2. To analyze data skew,
we explore the balanced accuracy (which measures mean recall on a per-class basis, see Appendix D).
We use balanced accuracy in order to investigate aggregate fairness gains offered by CaPC. Random
sampling from non-uniform distributions leads to certain pitfalls: e.g., underrepresented classes are
not specifically targeted in sampling. Thus, we additionally utilize active learning techniques, namely
entropy, margin, and greedy-k-center (see Definitions 6-8 in Appendix C), and analyze balanced
accuracy with each strategy.

7

Published as a conference paper at ICLR 2021

In Figure 3, we see that CaPC has a significant impact on the balanced accuracy when there is data
skew between the private data of participating parties. Even random sampling can drastically improve
balanced accuracy. Leveraging active learning techniques, we can achieve additional benefits in
balanced accuracy. In particular, we observe that entropy and margin sampling achieves the greatest
improvement over random sampling in per-class accuracy for the less represented classes ‘horse’,
‘ship’, and ‘truck’ on CIFAR10 and classes 1 and 2 on SVHN. These enhancements can be explained
by the underlying mechanisms of margin and entropy sampling because the less-represented classes
have a higher margin/entropy; the queries per class for each method are shown in Figure 9. Through
these experiments, we show that in data skew settings, the CaPC protocol can significantly improve
the fair performance of models (as measured by balanced accuracy), especially when combined with
active learning techniques. Note that we see similar trends with (normal) accuracy as well.

plane car bird cat deer dog frog horse ship truck
Classes

20

30

40

50

60

70

80

Ac
cu

ra
cy

Sampling Method
Before CaPC
Random
Entropy

Margin
Greedy-k-Center

0 1 2 3 4 5 6 7 8 9
Classes

50

60

70

80

90

Ac
cu

ra
cy

Sampling Method
Before CaPC
Random
Entropy

Margin
Greedy-k-Center

Figure 3: Using CaPC with active learning to improve balanced accuracy under non-uniform
data distribution. Dashed lines are balanced accuracy (BA). We observe that all sampling strategies
significantly improve BA and the best active learning scheme can improve BA by a total of 9.94
percentage-points (an additional 0.8 percentage points over Random sampling) on CIFAR10 (left)
and a total of 5.67 percentage-points (an additional 0.38) on SVHN (right).

4.4 PRIVACY VERSUS UTILITY

We now study the trade-off between privacy and utility of our obtained models. Recall that we add
Gaussian (or Laplacian) noise to the aggregate of predicted labels of all parties. Under the uniform
setting, we choose the standard deviation σ by performing a (random) grid search and choosing the
highest noise before a significant loss in accuracy is observed. In doing so, each query uses minimal
ε while maximizing utility. Figure 11 in Appendix F shows a sample plot for K = 250 models. For
more details on how ε is calculated, please refer to Appendix B.

As we increase the number of parties, we can issue more queries for a given privacy budget (ε)
which leads to a higher accuracy gain. In Figure 4, we report the accuracy gain achieved using CaPC
with various numbers of parties, K. With a fixed total dataset size, increasing the number of parties
decreases their training data size, leading to worse performing models. These models see the largest
benefit from CaPC but, importantly, we always see a net improvement across all values of K.

4.5 COMPUTATIONAL COSTS OF CONFIDENTIALITY

The incorporation of confidentiality in CaPC increases computational costs. We segment the analysis
of computational overhead of CaPC into three parts corresponding to sequential steps in the protocol:
(1) inference, (2) secret sharing between each querying and answering party, and (3) secret sharing
between the querying party and the PG. Each of these steps is analyzed in terms of the wall-clock
time (in seconds). We use the default encryption setting in HE-transformer and vary the modulus
range, N , which denotes the max value of a given plain text number to increase the maximum security
level possible. HE-transformer only supports inference on CPUs and is used in step (1).

8

Published as a conference paper at ICLR 2021

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Privacy budget (ε)

82
83
84
85
86
87
88
89
90

Ac
cu

ra
cy

 (%
)

Number of
parties:

150
200
250
300
400

Number of parties
150 200 250 300 400

Accuracy
gain (%) 0.62 1.45 2.39 3.07 3.87

Best ε 3.50 3.32 2.60 2.40 1.91

Figure 4: Accuracy gain for balanced SVHN
using CaPC versus number of parties and pri-
vacy budget, ε. With more parties, we can achieve
a higher accuracy gain at a smaller bound on ε.

Step (1) with neural network inference using MPC incurs the highest CPU and network costs (see
Table 1 and Figure 13 in Appendix F). Even the base level of security increases computational cost
by 100X, and high security levels see increases up to 1000X, in comparison to the non-encrypted
inference on CPU. Compared to step (1), the rest of the CaPC protocol incurs a negligible overhead to
perform secret sharing. Overall, CaPC incurs only a low additional cost over the underlying MP2ML
framework, as shown in Figure 13, which enables applicability and scalability as these tools progress.

5 DISCUSSION AND CONCLUSIONS

CaPC is a secure and private protocol that protects both the confidentiality of test data and the privacy
of training data, which are desired in applications like healthcare and finance. Our framework facili-
tates collaborative learning using heterogeneous model architectures and separate private datasets,
even if the number of parties involved is small. It offers notable advantages over recent methods for
learning with multiple participants, such as federated learning, which assumes training of a single
fixed model architecture. CaPC does not assume a homogeneous model architecture and allows
parties to separately and collaboratively train different models optimized for their own purposes.
Federated learning also requires a large number of parties while CaPC provides gains in accuracy
with significantly fewer participants, even in contexts where each party already has a model with
high accuracy. Notably, CaPC incurs low overhead on top of underlying tools used for secure neural
network inference.

Through our experiments, we also demonstrate that CaPC facilitates collaborative learning even when
there exists non i.i.d (highly skewed) private data among parties. Our experiments show that CaPC
improves on the fair performance of participating querying models as indicated by improvements
in the balanced accuracy, a common fairness metric. Further, we observe a significant increase
in per-class accuracy on less-represented classes on all datasets tested. Notably, CaPC is easily
configured to leverage active learning techniques to achieve additional fairness improvement gains
or to learn from other heterogeneous models trained with fairness techniques, e.g., with synthetic
minority oversampling (Chawla et al., 2002). In future work, we look to analyzing the fairness
implications of CaPC in contexts where there is discrimination over a private dataset’s sensitive
attributes, not just class labels. In these cases, other fairness metrics like equalized odds and equal
opportunity (see Appendix D) can be explored.

We note some limitations of the proposed protocol. HE-transformer does not prevent leaking certain
aspects of the model architecture, such as the type of non-linear activation functions and presence
of MaxPooling layers. CaPC improves upon existing methods in terms of the necessary number of
parties; however, it would be favorable to see this number decreased under 50 for better flexibility
and applicability in practice.

In the face of this last limitation, when there are few physical parties, we can generate a larger number
of virtual parties for CaPC, where each physical party subdivides their private dataset into disjoint
partitions and trains multiple local models. This would allow CaPC to tolerate more noise injected
during aggregation and provide better privacy guarantees. Note that each physical party could select
queries using a dedicated strong model instead of the weak models used for answering queries in
CaPC. This setting is desirable in cases where separate models are required within a single physical
party, for example, in a multi-national organization with per-country models.

9

Published as a conference paper at ICLR 2021

ACKNOWLEDGMENTS

We would like to acknowledge our sponsors, who support our research with financial and in-kind
contributions: Microsoft, Intel, CIFAR through the Canada CIFAR AI Chair and AI catalyst programs,
NFRF through an Exploration grant, and NSERC COHESA Strategic Alliance. Resources used in
preparing this research were provided, in part, by the Province of Ontario, the Government of Canada
through CIFAR, and companies sponsoring the Vector Institute www.vectorinstitute.ai/partners.
Finally, we would like to thank members of CleverHans Lab for their feedback, especially: Tejumade
Afonja, Varun Chandrasekaran, Stephan Rabanser, and Jonas Guan.

REFERENCES

Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and
Li Zhang. Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, pp. 308–318, 2016.

Fabian Boemer. he-transformer. https://github.com/IntelAI/he-transformer,
2020. [Online; accessed 19-September-2020].

Fabian Boemer, Yixing Lao, Rosario Cammarota, and Casimir Wierzynski. Ngraph-he: A graph
compiler for deep learning on homomorphically encrypted data. In Proceedings of the 16th ACM
International Conference on Computing Frontiers, CF ’19, pp. 3–13, New York, NY, USA, 2019.
Association for Computing Machinery.

Fabian Boemer, Rosario Cammarota, Daniel Demmler, Thomas Schneider, and Hossein Yalame.
MP2ML: a mixed-protocol machine learning framework for private inference. In Melanie Volkamer
and Christian Wressnegger (eds.), ARES 2020: The 15th International Conference on Availability,
Reliability and Security, Virtual Event, Ireland, August 25-28, 2020, pp. 14:1–14:10. ACM, 2020.

Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully homomorphic encryption
without bootstrapping. ACM Transactions on Computation Theory (TOCT), 6(3):1–36, 2014.

Nicholas Carlini, Chang Liu, Úlfar Erlingsson, Jernej Kos, and Dawn Song. The secret sharer:
Evaluating and testing unintended memorization in neural networks. In 28th {USENIX} Security
Symposium ({USENIX} Security 19), pp. 267–284, 2019.

Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer. Smote: synthetic
minority over-sampling technique. Journal of artificial intelligence research, 16:321–357, 2002.

Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. Homomorphic encryption for
arithmetic of approximate numbers. In International Conference on the Theory and Application of
Cryptology and Information Security, pp. 409–437. Springer, 2017.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity in
private data analysis. In Theory of cryptography conference, pp. 265–284. Springer, 2006.

Cynthia Dwork, Guy N Rothblum, and Salil Vadhan. Boosting and differential privacy. In 2010 IEEE
51st Annual Symposium on Foundations of Computer Science, pp. 51–60. IEEE, 2010.

Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential privacy. Foundations
and Trends® in Theoretical Computer Science, 9(3–4):211–407, 2014.

David Evans, Yan Huang, Jonathan Katz, and Lior Malka. Efficient privacy-preserving biometric
identification. In Proceedings of the 17th conference Network and Distributed System Security
Symposium, NDSS, volume 68, 2011.

Reza Zanjirani Farahani and Masoud Hekmatfar. Facility location: concepts, models, algorithms and
case studies. Springer, 2009.

Craig Gentry. A fully homomorphic encryption scheme, volume 20. Stanford university Stanford,
2009.

10

https://github.com/IntelAI/he-transformer

Published as a conference paper at ICLR 2021

Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter, Michael Naehrig, and John Wernsing.
Cryptonets: Applying neural networks to encrypted data with high throughput and accuracy. In
International Conference on Machine Learning, pp. 201–210, 2016.

Sebastien Godard. sar (sysstat). http://sebastien.godard.pagesperso-orange.fr/,
2020. [Online; accessed 10-September-2020].

Moritz Hardt, Eric Price, and Nati Srebro. Equality of opportunity in supervised learning. In Advances
in neural information processing systems, pp. 3315–3323, 2016.

Yangsibo Huang, Zhao Song, Danqi Chen, Kai Li, and Sanjeev Arora. Texthide: Tackling data
privacy in language understanding tasks. arXiv preprint 2010.06053, 2020a.

Yangsibo Huang, Zhao Song, Kai Li, and Sanjeev Arora. Instahide: Instance-hiding schemes for
private distributed learning. arXiv preprint 2010.02772, 2020b.

Yangsibo Huang, Yushan Su, Sachin Ravi, Zhao Song, Sanjeev Arora, and Kai Li. Privacy-preserving
learning via deep net pruning. arXiv preprint 2003.01876, 2020c.

Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious transfers efficiently. In
Annual International Cryptology Conference, pp. 145–161. Springer, 2003.

Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan. Gazelle: A low latency
framework for secure neural network inference. In 27th USENIX Security Symposium (USENIX
Security 18), pp. 1651–1669, 2018.

Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik, Ananda Theertha Suresh, and
Dave Bacon. Federated learning: Strategies for improving communication efficiency. arXiv
preprint arXiv:1610.05492, 2016.

David D. Lewis and William A. Gale. A sequential algorithm for training text classifiers. In Pro-
ceedings of the 17th Annual International ACM-SIGIR Conference on Research and Development
in Information Retrieval. Dublin, Ireland, 3-6 July 1994 (Special Issue of the SIGIR Forum), pp.
3–12, 1994.

Dahlia Malkhi, Noam Nisan, Benny Pinkas, and Yaron Sella. Fairplay—a secure two-party computa-
tion system. In Proceedings of the 13th Conference on USENIX Security Symposium - Volume 13,
SSYM’04, pp. 20, USA, 2004. USENIX Association.

Alessandro Mantelero. The eu proposal for a general data protection regulation and the roots of the
‘right to be forgotten’. Computer Law & Security Review, 29(3):229–235, 2013.

H Brendan McMahan, Daniel Ramage, Kunal Talwar, and Li Zhang. Learning differentially private
recurrent language models. arXiv preprint arXiv:1710.06963, 2017.

Ilya Mironov. Rényi differential privacy. In 2017 IEEE 30th Computer Security Foundations
Symposium (CSF), pp. 263–275. IEEE, 2017.

Pratyush Mishra, Ryan Lehmkuhl, Akshayaram Srinivasan, Wenting Zheng, and Raluca Ada Popa.
Delphi: A cryptographic inference service for neural networks. In 29th USENIX Security Sym-
posium (USENIX Security 20), pp. 2505–2522. USENIX Association, August 2020. ISBN
978-1-939133-17-5.

Payman Mohassel and Yupeng Zhang. Secureml: A system for scalable privacy-preserving machine
learning. In 2017 IEEE Symposium on Security and Privacy (SP), pp. 19–38. IEEE, 2017.

Nicolas Papernot, Martín Abadi, Úlfar Erlingsson, Ian J. Goodfellow, and Kunal Talwar. Semi-
supervised knowledge transfer for deep learning from private training data. In 5th International
Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Confer-
ence Track Proceedings, 2017.

Nicolas Papernot, Shuang Song, Ilya Mironov, Ananth Raghunathan, Kunal Talwar, and Úlfar
Erlingsson. Scalable private learning with PATE. In 6th International Conference on Learning
Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track
Proceedings, 2018.

11

http://sebastien.godard.pagesperso-orange.fr/

Published as a conference paper at ICLR 2021

Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. Psi from paxos: Fast, malicious private set
intersection. In Annual International Conference on the Theory and Applications of Cryptographic
Techniques, pp. 739–767. Springer, 2020.

Michael O. Rabin. How to exchange secrets with oblivious transfer. Cryptology ePrint Archive,
Report 2005/187, 2005. https://eprint.iacr.org/2005/187.

Tobias Scheffer, Christian Decomain, and Stefan Wrobel. Active hidden markov models for informa-
tion extraction. In International Symposium on Intelligent Data Analysis, pp. 309–318. Springer,
2001.

Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A core-set
approach. arXiv preprint arXiv:1708.00489, 2017.

Burr Settles. Active learning literature survey. Computer Sciences Technical Report 1648, University
of Wisconsin–Madison, 2009.

Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–613, 1979.

Claude E Shannon. A mathematical theory of communication. Bell system technical journal, 27(3):
379–423, 1948.

Micah J. Sheller, Brandon Edwards, G. Anthony Reina, Jason Martin, Sarthak Pati, Aikaterini
Kotrotsou, Mikhail Milchenko, Weilin Xu, Daniel Marcus, Rivka R. Colen, and Spyridon Bakas.
Federated learning in medicine: facilitating multi-institutional collaborations without sharing
patient data. Scientific Reports, 10(1):12598, 2020. doi: 10.1038/s41598-020-69250-1. URL
https://doi.org/10.1038/s41598-020-69250-1.

Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference attacks
against machine learning models. In 2017 IEEE Symposium on Security and Privacy (SP), pp.
3–18. IEEE, 2017.

Xiao Wang, Alex J. Malozemoff, and Jonathan Katz. EMP-toolkit: Efficient MultiParty computation
toolkit. https://github.com/emp-toolkit, 2016.

Andrew Chi-Chih Yao. How to generate and exchange secrets (extended). In 27th Annual Symposium
on Foundations of Computer Science, pp. 162–167, Toronto, Ontario, Canada, October 27–29,
1986. IEEE Computer Society Press.

A MORE BACKGROUND ON CRYPTOGRAPHY

A.1 CRYPTOGRAPHIC BUILDING BLOCKS

Homomorphic encryption. Homomorphic encryption defines an encryption scheme such that
the encryption and decryption functions are homomorphic between plaintext and ciphertext spaces.
Although it is known that fully homomorphic encryption can be constructed based on lattice-based
assumptions, most applications only require a weaker version with bounded number of multiplications
on each ciphertext. Schemes with this constraint are much more practical, including for example,
BGV (Brakerski et al., 2014), CKKS (Cheon et al., 2017), etc.

Secret sharing. Secret sharing denotes a scheme in which a datum, the secret, is shared amongst a
group of parties by dividing the secret into parts such that each party only has one part, or ‘share’ of
the secret. The secret can only be recovered if a certain number of parties conspire to combine their
shares. It is easy to construct secret sharing modulo a positive integer. If the application does not
allow modular operation, one can still achieve statistically secure secret sharing by using random
shares that are much larger than the secret being shared (Evans et al., 2011).

Oblivious transfer. Oblivious transfer involves two parties: the sending party and the receiving
party. The sending party has two pieces of information, s0 and s1, and the receiver wants to receive
sb, where b ∈ {0, 1}, such that the sending party cannot learn b and the receiving party cannot learn
s¬b. In general, oblivious transfer requires public-key operations, however, it is possible to execute a
large number of oblivious transfers with only a very small number of public-key operations based on
oblivious transfer extension (Ishai et al., 2003).

12

https://eprint.iacr.org/2005/187
https://doi.org/10.1038/s41598-020-69250-1
https://github.com/emp-toolkit

Published as a conference paper at ICLR 2021

Garbled circuits. In Yao’s garbled circuit protocol for two-party computation, each of the two
parties assumes a role, that of garbler or that of evaluator. The function f on which to compute each
of the two parties’ inputs is described as a Boolean circuit. The garbler randomly generates aliases
(termed labels) representing 0 and 1 in the Boolean circuit describing f and replaces the binary values
with the generated labels for each wire in the circuit. At each gate in the circuit, which can be viewed
as a truth table, the garbler uses the labels of each possible combination of inputs to encrypt the
corresponding outputs, and permutes the rows of the truth table. The garbler then uses the generated
labels for 0 and 1 to encode their own input data and sends these labels and the garbled Boolean
circuit to the evaluator. The evaluator now converts their binary input data to the corresponding
labels through a 1-2 oblivious transfer protocol with the garbler. After receiving the labels for their
input, the evaluator evaluates the garbled circuit by trying to decrypt each row in the permutable truth
tables at each gate using the input labels; only one row will be decryptable at each gate, which is
the output label for the outgoing wire from the gate. The evaluator eventually finishes evaluating the
garbled circuit and obtains the label for the output of the function f computed on the garbler’s and
the evaluator’s input. The garbler then must provide the true value for the output label so that both
parties can get the output.

A.2 PROTECTING CONFIDENTIALITY USING MPC

Neural networks present a challenge to secure multi-party computation protocols due to their unique
structure and exploitative combination of linear computations and non-linear activation functions.
Cryptographic inference with neural networks can be considered in two party computation case in
which one party has confidential input for which they wish to obtain output from a model and the
other party stores the model; in many cases the party storing the model also wishes that the model
remains secure.

Confidential learning and inference with neural networks typically uses homomorphic encryption
(HE) or secure multi-party computation (MPC) methods. Many libraries support pure HE or MPC
protocols for secure inference of neural networks; a comprehensive list can be viewed in (Boemer
et al., 2020). Notably, libraries such as nGraph-HE (Boemer et al., 2019) and CryptoNets (Gilad-
Bachrach et al., 2016) provide pure homomorphic encryption solutions to secure neural network
inference. nGraph-HE, an extension of graph compiler nGraph, allows secure inference of DNNs
through linear computations at each layer using CKKS homomorphic encryption scheme (Cheon
et al., 2017; Boemer et al., 2019). CryptoNets similarly permit confidential neural network inference
using another leveled homomorphic encryption scheme, YASHE’ (Gilad-Bachrach et al., 2016).
On the other hand, several libraries employing primarily MPC methods in secure NN inference
frameworks rely on ABY, a tool providing support for common non-polynomial activation functions
in NNs through use of both Yao’s GC and GMW.

In DL contexts, while pure homomorphic encryption methods maintain model security, their failure
to support common non-polynomial activation functions leads to leaking of pre-activation values
(feature maps at hidden layers). Tools that use solely MPC protocols avoid leaking pre-activation
values as they can guarantee data confidentiality on non-polynomial activation functions but may
compromise the security of the model architecture by leaking activation functions or model structure.

Recent works on secure NN inference propose hybrid protocols that combine homomorphic encryp-
tion schemes, and MPC methods to build frameworks that try to reduce leakages common in pure HE
and MPC protocols. Among recent works that use hybrid protocols and do not rely on trusted third
parties are Gazelle (Juvekar et al., 2018), Delphi (Mishra et al., 2020), and MP2ML (Boemer et al.,
2020).

Gazelle, Delphi and MP2ML largely support non-polynomial activation functions encountered in
convolutional neural networks, such as maximum pooling and rectified linear unit (ReLU) operations.
Gazelle introduced several improvements over previous methods for secure NN inference primarily
relating to latency and confidentiality. In particular, Gazelle framework provides homomorphic en-
cryption libraries with low latency implementations of algorithms for single instruction multiple data
(SIMD) operations, ciphertext permutation, and homomorphic matrix and convolutional operations,
pertinent to convolutional neural networks. Gazelle utilizes kernel methods to evaluate homomorphic
operations for linear components of networks, garbled circuits to compute non-linear activation
functions confidentially and additive secret sharing to quickly switch between these cryptographic
protocols. Delphi builds on Gazelle, optimizing computation of both linear and non-linear com-

13

Published as a conference paper at ICLR 2021

putations in CNNs by secret sharing model weights in the pre-processing stage to speed up linear
computations later, and approximating certain activation functions such as ReLU with polynomials.
MP2ML employs nGraph-HE for homomorphic encryption and ABY framework for evaluation of
non-linear functions using garbled circuits.

B MORE BACKGROUND ON DIFFERENTIAL PRIVACY

One of the compelling properties of differential privacy is that it permits the analysis and control of
cumulative privacy cost over multiple consecutive computations. For instance, strong composition
theorem (Dwork et al., 2010) gives a tight estimate of the privacy cost associated with a sequence of
adaptive mechanisms {Mi}i∈I .
Theorem 1 (Strong Composition). For ε, δ, δ′ ≥ 0, the class of (ε, δ)-differentially private mecha-
nisms satisfies (ε′, kδ + δ′)-differential privacy under k-fold adaptive composition for:

ε′ = ε
√

2k log(1/δ′) + kε(eε − 1) (2)

To facilitate the evaluation of privacy leakage resulted by a randomized mechanismM, it is helpful to
explicitly define its corresponding privacy loss cM and privacy loss random variableCM. Particularly,
the fact thatM is (ε, δ)-differentially private is equivalent to a certain tail bound on CM.
Definition 2 (Privacy Loss). Given a pair of adjacent datasets d, d′ ∈ D and an auxiliary input aux,
the privacy loss cM of a randomized mechanismM evaluated at an outcome o ∈ R is defined as:

cM(o | aux, d, d′) , log
Pr[M(aux, d) = o]

Pr[M(aux, d′) = o]
(3)

For an outcome o ∈ R sampled fromM(d), CM(aux, d, d′) takes the value cM(o | aux, d, d′).

Based on the definition of privacy loss, Abadi et al. (Abadi et al., 2016) introduced the moments
accountant to track higher-order moments of privacy loss random variable and achieved even tighter
privacy bounds for k-fold adaptive mechanisms.
Definition 3 (Moments Accountant). Given any adjacent datasets d, d′ ∈ D and any auxiliary input
aux, the moments accountant of a randomized mechanismM is defined as:

αM(λ) , max
aux,d,d′

αM(λ | aux, d, d′) (4)

where αM(λ | aux, d, d′) , logE[exp(λCM(aux, d, d′))] is obtained by taking the logarithm of the
privacy loss random variable.

As a natural relaxation to the conventional (ε, δ)-differential privacy, Rényi differential privacy
(RDP) (Mironov, 2017) provides a more convenient and accurate approach to estimating privacy loss
under heterogeneous composition.
Definition 4 (Rényi Divergence). For two probability distributions P and Q defined over R, the
Rényi divergence of order λ > 1 between them is defined as:

Dλ(P ||Q) ,
1

λ− 1
logEx∼Q

[
(P (x)/Q(x))λ

]
=

1

λ− 1
logEx∼P

[
(P (x)/Q(x))λ−1

]
(5)

Definition 5 (Rényi Differential Privacy). A randomized mechanismM is said to satisfy ε-Rényi
differential privacy of order λ, or (λ, ε)-RDP for short, if for any adjacent datasets d, d′ ∈ D:

Dλ(M(d) ||M(d′)) =
1

λ− 1
logEx∼M(d)

[(
Pr[M(d) = x]

Pr[M(d′) = x]

)λ−1]
≤ ε (6)

Theorem 2 (From RDP to DP). If a randomized mechanismM guarantees (λ, ε)-RDP, then it also
satisfies (ε+ log(1/δ)

λ−1 , δ)-differential privacy for any δ ∈ (0, 1).

Building upon the moments accountant and RDP techniques, Private Aggregation of Teacher En-
sembles (PATE) (Papernot et al., 2017) provides a flexible approach to training machine learning
models with strong privacy guarantees. Precisely, rather than directly learning from labeled private

14

Published as a conference paper at ICLR 2021

data, the model that gets released instead learns from unlabeled public data by querying a teacher
ensemble for predicted labels. Models in the ensemble are themselves trained on disjoint partitions of
the private dataset, while privacy guarantees are enabled by applying the Laplace mechanism to the
ensemble’s aggregated label counts. Coupled with data-dependent privacy analysis, PATE achieves
a tighter estimate of the privacy loss associated with label queries, especially when the consensus
among teacher models is strong. Given this motivation, the follow-up work of PATE (Papernot et al.,
2018) further improves the privacy bound both by leveraging a more concentrated noise distribution
to strengthen consensus and by rejecting queries that lack consensus.

C MORE BACKGROUND ON ACTIVE LEARNING

Active learning, sometimes referred to as query learning, exploits the intuition that machine learning
algorithms will be able to learn more efficiently if they can actively select the data from which they
learn. For certain supervised learning tasks, this insight is of particularly important implications, as
labeled data rarely exists in abundance and data labeling can be very demanding (Settles, 2009).

In order to pick queries that will most likely contribute to model learning, various pool sampling
methods have been proposed to estimate the informativeness of unlabeled samples. Uncertainty-based
approaches (Lewis & Gale, 1994), such as margin sampling and entropy sampling, typically achieve a
satisfactory trade-off between sample utility and computational efficiency. We also explore a core-set
approach to active learning using greedy-k-center sampling (Sener & Savarese, 2017).
Definition 6 (Margin Sampling (Scheffer et al., 2001)). Given an unlabeled dataset d and a clas-
sification model with conditional label distribution Pθ(y |x), margin sampling outputs the most
informative sample:

x∗ = arg min
x∈d

Pθ(ŷ1 |x)− Pθ(ŷ2 |x) (7)

where ŷ1 and ŷ2 stand for the most and second most probable labels for x, according to the model.
Definition 7 (Entropy Sampling). Using the setting and notations in Definition 6, margin sampling
can be generalized by using entropy (Shannon, 1948) as an uncertainty measure as follows:

x∗ = arg max
x∈d

−
∑
i

Pθ(yi |x) logPθ(yi |x) (8)

where yi ranges over all possible labels.
Definition 8 (Greedy-K-center Sampling). We aim to solve the k-center problem defined by Farahani
& Hekmatfar (2009), which is, intuitively, the problem of picking k center points that minimize the
largest distance between a data point and its nearest center. Formally, this goal is defined as

min
S:|S∪D|≤k

max
i

min
j∈S∪D

∆(xi,xj) (9)

where D is the current training set and S is our new chosen center points. This definition can can be
solved greedily as shown in (Sener & Savarese, 2017).

D MORE BACKGROUND ON FAIRNESS

Due to the imbalance in sample quantity and learning complexity, machine learning models may
have disparate predictive performance over different classes or demographic groups, resulting in
unfair treatment of certain population. To better capture this phenomenon and introduce tractable
countermeasures, various fairness-related criteria have been proposed, including balanced accuracy,
demographic parity, equalized odds (Hardt et al., 2016), etc.
Definition 9 (Balanced Accuracy). Balanced accuracy captures model utility in terms of both
accuracy and fairness. It is defined as the average of recall scores obtained on all classes.

Among the criteria that aim to alleviate discrimination against certain protected attributes, equalized
odds and equal opportunity Hardt et al. (2016) are of particular research interests.
Definition 10 (Equalized Odds). A machine learning model is said to guarantee equalized odds with
respect to protected attribute A and ground truth label Y if its prediction Ŷ and A are conditionally
independent given Y . In the case of binary random variables A, Y, Ŷ , this is equivalent to:

Pr
[
Ŷ = 1 |A = 0, Y = y

]
= Pr

[
Ŷ = 1 |A = 1, Y = y

]
, y ∈ {0, 1} (10)

15

Published as a conference paper at ICLR 2021

To put it another way, equalized odds requires the model to have equal true positive rates and equal
false positive rates across the two demographic groups A = 0 and A = 1.

Definition 11 (Equal Opportunity). Equal opportunity is a relaxation of equalized odds that requires
non-discrimination only within a specific outcome group, often referred to as the advantaged group.
Using previous notations, the binary case with advantaged group Y = 1 is equivalent to:

Pr
[
Ŷ = 1 |A = 0, Y = 1

]
= Pr

[
Ŷ = 1 |A = 1, Y = 1

]
(11)

E PROOF OF CONFIDENTIALITY

Here we prove that our protocol described in the main body does not reveal anything except the final
noised result to Pi∗ . In can be proven in the standard real-world ideal-world paradigm, where the
ideal functionality takes inputs from all parties and sends the final results to Pi∗ . We use A to denote
the set of corrupted parties. Below, we describe the simulator (namely S). The simulator strategy
depends on if i∗ is corrupted.

If i∗ ∈ A, our simulator works as below:

1.a) The simulator simulates what honest parties would do.

1.b) For each i /∈ A, S sends fresh encryption of a random ri to Pi∗ .
1.c) For each i /∈ A, S sends random si to Pi∗ on be half of the 2PC functionality between Pi

and Pi∗ .
2-3 S sends the output of the whole computation to Pi∗ on behalf of the 2PC functionality

between PG and Pi∗

If i∗ /∈ A, our simulator works as below:

1.a) If i∗ /∈ A, for each i ∈ A, S computes a fresh encryption of zero and sends it to Pi on
behalf of Pi∗ .

1.b) The simulator simulates what honest parties would do.

1.c) For each i ∈ A, S sends random ŝi to Pi on behalf of the 2PC functionality between Pi
and Pi∗ .

2-3 The simulator simulates what honest parties would do.

Assuming that the underlying encryption scheme is CPA secure and that 2PC protocols used in step 1,
2 and 3 are secure with respect to standard definitions (i.e., reveals nothing beyond the outputs), our
simulation itself is perfect.

F DETAILS ON EXPERIMENTAL SETUP

F.1 MNIST AND FASHION-MNIST

We use the same setup as for CIFAR10 and SVHN datasets with the following adjustments. We select
K = 250 as the default number of parties. For the imbalanced classes we select classes 1 and 2 for
MNIST as well as Trouser and Pullover for Fashion-MNIST. We use the Gaussian noise with σ = 40
(similarly to SVHN). We are left with 1, 000 evaluation data points from the test set (similarly to
CIFAR10). We fix the default value of ε = 2.35 for MNIST and ε = 3.89 for Fashion-MNIST. We
use a variant of the LeNet architecture.

F.2 DETAILS ON ARCHITECTURES

To train the private models on subsets of datasets, we downsize the standard architectures, such as
VGG-16 or ResNet-18. Below is the detailed list of layers in each of the architectures used (generated
using torchsummary). The diagram for ResNet-10 also includes skip connections and convolutional
layers for adjusting the sizes of feature maps.

16

Published as a conference paper at ICLR 2021

VGG-7 for SVHN:
--

Layer type Output Shape Param #
==

Conv2d-1 [-1, 64, 32, 32] 1,728
BatchNorm2d-2 [-1, 64, 32, 32] 128

ReLU-3 [-1, 64, 32, 32] 0
MaxPool2d-4 [-1, 64, 16, 16] 0

Conv2d-5 [-1, 128, 16, 16] 73,728
BatchNorm2d-6 [-1, 128, 16, 16] 256

ReLU-7 [-1, 128, 16, 16] 0
MaxPool2d-8 [-1, 128, 8, 8] 0

Conv2d-9 [-1, 256, 8, 8] 294,912
BatchNorm2d-10 [-1, 256, 8, 8] 512

ReLU-11 [-1, 256, 8, 8] 0
Conv2d-12 [-1, 256, 8, 8] 589,824

BatchNorm2d-13 [-1, 256, 8, 8] 512
ReLU-14 [-1, 256, 8, 8] 0

MaxPool2d-15 [-1, 256, 4, 4] 0
Conv2d-16 [-1, 512, 4, 4] 1,179,648

BatchNorm2d-17 [-1, 512, 4, 4] 1,024
ReLU-18 [-1, 512, 4, 4] 0

Conv2d-19 [-1, 512, 4, 4] 2,359,296
BatchNorm2d-20 [-1, 512, 4, 4] 1,024

ReLU-21 [-1, 512, 4, 4] 0
Linear-22 [-1, 10] 5,130

==
Total params: 4,507,722
Params size MB: 17.20
--

ResNet-10:
--

Layer type Output Shape Param #
==

Conv2d-1 [-1, 64, 32, 32] 1,728
BatchNorm2d-2 [-1, 64, 32, 32] 128

Conv2d-3 [-1, 64, 32, 32] 36,864
BatchNorm2d-4 [-1, 64, 32, 32] 128

Conv2d-5 [-1, 64, 32, 32] 36,864
BatchNorm2d-6 [-1, 64, 32, 32] 128
BasicBlock-7 [-1, 64, 32, 32] 0

Conv2d-8 [-1, 128, 16, 16] 73,728
BatchNorm2d-9 [-1, 128, 16, 16] 256

Conv2d-10 [-1, 128, 16, 16] 147,456
BatchNorm2d-11 [-1, 128, 16, 16] 256

Conv2d-12 [-1, 128, 16, 16] 8,192
BatchNorm2d-13 [-1, 128, 16, 16] 256
BasicBlock-14 [-1, 128, 16, 16] 0

Conv2d-15 [-1, 256, 8, 8] 294,912
BatchNorm2d-16 [-1, 256, 8, 8] 512

Conv2d-17 [-1, 256, 8, 8] 589,824
BatchNorm2d-18 [-1, 256, 8, 8] 512

Conv2d-19 [-1, 256, 8, 8] 32,768
BatchNorm2d-20 [-1, 256, 8, 8] 512
BasicBlock-21 [-1, 256, 8, 8] 0

Conv2d-22 [-1, 512, 4, 4] 1,179,648
BatchNorm2d-23 [-1, 512, 4, 4] 1,024

17

Published as a conference paper at ICLR 2021

Conv2d-24 [-1, 512, 4, 4] 2,359,296
BatchNorm2d-25 [-1, 512, 4, 4] 1,024

Conv2d-26 [-1, 512, 4, 4] 131,072
BatchNorm2d-27 [-1, 512, 4, 4] 1,024
BasicBlock-28 [-1, 512, 4, 4] 0

Linear-29 [-1, 10] 5,130
==
Total params: 4,903,242
Params size MB: 18.70
--

LeNet style architecture for MNIST:
--

Layer type Output Shape Param #
==

Conv2d-1 [-1, 20, 24, 24] 520
MaxPool2d-2
Conv2d-3 [-1, 50, 8, 8] 25,050
MaxPool2d-4
Linear-5 [-1, 500] 400,500
ReLU-6
Linear-7 [-1, 10] 5,010

==
Total params: 431,080
Trainable params: 431,080
Non-trainable params: 0
--
Input size MB: 0.00
Forward/backward pass size MB: 0.12
Params size MB: 1.64
Estimated Total Size MB: 1.76
--

18

Published as a conference paper at ICLR 2021

G ADDITIONAL EXPERIMENTS AND FIGURES

pla
ne ca

r
bir

d ca
t

de
er do

g
fro

g
ho

rsesh
ip

tru
ck

Classes

40

50

60

70

80

90
Ac

cu
ra

cy

CIFAR10, Homogeneous, QP1

Before CaPC Mean
After CaPC Mean
Before CaPC
After CaPC

pla
ne ca

r
bir

d ca
t

de
er do

g
fro

g
ho

rsesh
ip

tru
ck

Classes

40

50

60

70

80

90

CIFAR10, Homogeneous, QP2

pla
ne ca

r
bir

d ca
t

de
er do

g
fro

g
ho

rsesh
ip

tru
ck

Classes

40

50

60

70

80

90

CIFAR10, Homogeneous, QP3

Figure 5: Using CaPC to improve each party’s model performance on the CIFAR10 dataset.
We observe that each separate querying party (QP) sees a per-class and overall accuracy bonus using
CaPC.

0 1 2 3 4 5 6 7 8 9
Classes

65

70

75

80

85

90

95

Ac
cu

ra
cy

SVHN, Homogeneous, QP1

Before CaPC Mean
After CaPC Mean
Before CaPC
After CaPC

0 1 2 3 4 5 6 7 8 9
Classes

65

70

75

80

85

90

95

SVHN, Homogeneous, QP2

0 1 2 3 4 5 6 7 8 9
Classes

65

70

75

80

85

90

95

SVHN, Homogeneous, QP3

Figure 6: Using CaPC to improve each party’s model performance on the SVHN dataset. We
observe that all querying parties (QPs) see a net increase overall, with nearly every class seeing
improved performance.

19

Published as a conference paper at ICLR 2021

0 1 2 3 4 5 6 7 8 9
Classes

55

60

65

70

75

80

85

90

95

Ac
cu

ra
cy

SVHN, Model: VGG-7

Before CaPC Mean
After CaPC Mean
Before CaPC
After CaPC

0 1 2 3 4 5 6 7 8 9
Classes

55

60

65

70

75

80

85

90

95

SVHN, Model: ResNet-8

0 1 2 3 4 5 6 7 8 9
Classes

55

60

65

70

75

80

85

90

95

SVHN, Model: Resnet-10

Figure 7: Using CaPC to improve each party’s heterogeneous model performance on the SVHN
dataset. Each querying party adopts a different model architecture (1 of 3) and 1

3 of all answering
parties adopt each model architecture. All model architectures see benefits from using CaPC.

0 1 2 3 4 5 6 7 8 9
Classes

70

75

80

85

90

95

100

Ac
cu

ra
cy

MNIST, Homogeneous

Before CaPC Mean
After CaPC Mean
Before CaPC
After CaPC

T-
sh

irt
/T

op

Tr
ou

se
r

Pu
llo

ve
r

D
re

ss

C
oa

t

Sa
nd

al

Sh
irt

Sn
ea

ke
r

Ba
g

An
kl

e
Bo

ot

Classes

20

40

60

80

100

Ac
cu

ra
cy

Fashion-MNIST, Homogeneous

Before CaPC Mean
After CaPC Mean
Before CaPC
After CaPC

Figure 8: Using CaPC to improve model performance on balanced MNIST on Fashion-MNIST.
Dashed lines represent mean accuracy. We observe a mean increase of 4.5% for MNIST (ε = 2.35)
and 2.9% for Fashion-MNIST (ε = 3.89).

Method Forward Pass (Step 1a)
CPU,P = 8192 14.22± 0.11
CPU,P = 16384 29.46± 2.34
CPU,P = 32768 57.26± 0.39

GPU, no encryption 3.15± 0.22
CPU, no encryption 0.152± 0.0082

QP-AP (Steps 1b and 1c) QP-PG (Steps 2 and 3)
0.12± 0.0058 0.030± 0.0045

Table 1: Wall-clock time (sec) of various encryption methods with a batch size of 1. We vary the
modulus range, P , which denotes the max value of a given plain text number. Note that the GPU is
slower than the CPU because of the mini-batch with a single data item and data transfer overhead to
and from the GPU. We use the CryptoNet-ReLU model provided by HE-transformer (Boemer, 2020).

20

Published as a conference paper at ICLR 2021

plane car bird cat deer dog frog horse ship truck
Classes

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

N
um

be
r o

f Q
ue

rie
s

CIFAR10, Homogeneous

Random
Entropy
Margin
Greedy-k-Center

0 1 2 3 4 5 6 7 8 9
Classes

0

5

10

15

20

25

30

35

N
um

be
r o

f Q
ue

rie
s

SVHN, Homogeneous

Random
Entropy
Margin
Greedy-k-Center

Figure 9: Using active learning to improve CaPC fairness. We observe that underrepresented
classes are sampled more frequently than in a random strategy.

0 1 2 3 4 5 6 7 8 9
Classes

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

Sampling Method
Before CaPC
Random
Entropy

Margin
Greedy-k-Center

T-
sh

irt
/T

op

Tr
ou

se
r

Pu
llo

ve
r

D
re

ss

C
oa

t

Sa
nd

al

Sh
irt

Sn
ea

ke
r

Ba
g

An
kl

e
Bo

ot

Classes

0

20

40

60

80

100

Ac
cu

ra
cy

Sampling Method
Before CaPC
Random
Entropy

Margin
Greedy-k-Center

Figure 10: Using CaPC with active learning to improve balanced accuracy under non-uniform
data distribution. Dashed lines are balanced accuracy (BA). We observe that all sampling strategies
significantly improve BA and the best active learning scheme can improve BA by a total of 10.10
percentage-points (an additional 0.45 percentage points over Random sampling) on MNIST (left)
and a total of 10.94 percentage-points (an additional 2.48) on Fashion-MNIST (right).

21

Published as a conference paper at ICLR 2021

0 10 20 30 40
Noise Standard Deviation,

30

40

50

60

70

Ac
cu

ra
cy

, %

CIFAR10, Homogeneous

32.5

35.0

37.5

40.0

42.5

45.0

47.5

50.0

Vo
te

 G
ap

 B
et

w
ee

n
To

p-
2

C
ho

se
n

C
la

ss
es

Accuracy
Gap
Chosen

0 50 100 150 200
Noise Standard Deviation,

40

50

60

70

80

90

Ac
cu

ra
cy

, %

SVHN, Homogeneous

45

50

55

60

65

70

75

80

85

Vo
te

 G
ap

 B
et

w
ee

n
To

p-
2

C
ho

se
n

C
la

ss
es

Accuracy
Gap
Chosen

0 50 100 150 200
Noise Standard Deviation,

40

50

60

70

80

90

Ac
cu

ra
cy

, %

MNIST, Homogeneous

100

120

140

160

180

200

Vo
te

 G
ap

 B
et

w
ee

n
To

p-
2

C
ho

se
n

C
la

ss
es

Accuracy
Gap
Chosen

0 50 100 150 200
Noise Standard Deviation,

30

40

50

60

70

80

Ac
cu

ra
cy

, %

Fashion-MNIST, Homogeneous

100

120

140

160

180

Vo
te

 G
ap

 B
et

w
ee

n
To

p-
2

C
ho

se
n

C
la

ss
es

Accuracy
Gap
Chosen

Figure 11: Tuning the amount of noise (σ) in CaPC. We tune the amount of Gaussian noise that
should be injected in the noisy argmax mechanism by varying the standard deviation. We choose
the highest noise: σ = 7 for CIFAR10, σ = 40 for SVHN, MNIST, and Fashion-MNIST, without
having a significant impact on the model accuracy, allowing a minimal privacy budget expenditure
while maximizing utility. We train 50 models for CIFAR10 and 250 models for SVHN, MNIST, and
Fashion-MNIST.

0 1 2 3 4 5
Privacy budget (ε)

82

84

86

88

90

92

94

Ac
cu

ra
cy

 (%
)

Number of
parties:

150
200
250
300
400

Number of parties
150 200 250 300 400

Accuracy
gain (%) 4.11 3.33 4.50 4.69 8.39

Best ε 4.50 2.50 2.35 2.00 1.63

Figure 12: Accuracy gain for balanced MNIST
using CaPC versus number of parties and pri-
vacy budget, ε. With more parties, we can achieve
a higher accuracy gain at a smaller bound on ε.

22

Published as a conference paper at ICLR 2021

0

20

40

60

80

100

0 5 10 15 20 25

U
ti

liz
at

io
n

 (
%

)

Time step (sec)

CPU

NET

MEM

1a

MP2ML (HE-transformer for nGraph).

0

20

40

60

80

100

0 5 10 15 20 25 30 35

U
ti

liz
at

io
n

 (
%

)

Time step (sec)

CPU

NET

MEM

1b
1c1a 2 3

CaPC (built on top of the MP2ML framework).

Figure 13: Measuring the CPU, Network (NET), and Memory (MEM) usage over time for
CaPC. We use the CryptoNet-ReLU model provided by HE-transformer (Boemer, 2020) and sar (Go-
dard, 2020) (System Activity Report) to perform this micro-analysis. We label the steps according
to the CaPC protocol shown in Figure 1. The network usage reaches its peaks during execution of
ReLU and then MaxPool, where the intermediate feature maps have to be exchanged between the
querying and answering parties for the computation via garbled circuits.

23

	1 Introduction
	2 Background
	2.1 Cryptographic Preliminaries for Confidentiality
	2.2 Differential Privacy

	3 The CaPC Protocol
	3.1 Problem Description
	3.2 CaPC Protocol Description
	3.3 Confidentiality and Differential Privacy Guarantees

	4 Experiments
	4.1 Implementation
	4.2 Evaluation Setup
	4.3 Collaboration Analysis
	4.3.1 Uniformly Sampled Private Data
	4.3.2 Non-Uniformly Sampled Private Data

	4.4 Privacy Versus Utility
	4.5 Computational Costs of Confidentiality

	5 Discussion and Conclusions
	A More Background on Cryptography
	A.1 Cryptographic Building Blocks
	A.2 Protecting Confidentiality using MPC

	B More Background on Differential Privacy
	C More Background on Active Learning
	D More Background on Fairness
	E Proof of Confidentiality
	F Details on Experimental Setup
	F.1 MNIST and Fashion-MNIST
	F.2 Details on Architectures

	G Additional Experiments and Figures

