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Abstract

Image generative models have become increas-
ingly popular, but training them requires large
datasets that are costly to collect and curate. To
circumvent these costs, some parties may exploit
existing models by using the generated images
as training data for their own models. In gen-
eral, watermarking is a valuable tool for detect-
ing unauthorized use of generated images. How-
ever, when these images are used to train a new
model, watermarking can only enable detection
if the watermark persists through training and
remains identifiable in the outputs of the newly
trained model—a property known as radioactiv-
ity. In this work, we are the first to propose a
radioactive watermarking method tailored for Im-
age Autoregressive Models (IARs)—drawing in-
spiration from techniques in large language mod-
els (LLMs), which share IARs’ autoregressive
paradigm. Our extensive experimental evaluation
highlights our method’s effectiveness in preserv-
ing radioactivity within IARs, enabling robust
provenance tracking, and preventing unauthorized
use of their generated images.

1. Introduction

Generative models, particularly in the vision domain (Rom-
bach et al., 2022; Ho et al., 2020; Song & Ermon, 2020;
Tian et al., 2024; Yu et al., 2024), have gained significant
attention for their ability to generate high-quality, realistic
images. However, training these models demands large and
diverse datasets, which are often costly and time-consuming
to collect and curate (Schuhmann et al., 2022; Oquab et al.,
2023; Andrews et al., 2023). In light of these high costs,
some parties attempt to bypass the data collection process
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by using images generated by existing models as training
data for their own new models (Shumailov et al., 2024).
This practice not only undermines the original data sources
but also raises critical concerns regarding unauthorized use
of generated outputs (Wang et al., 2024).

To address these concerns, watermarking has emerged as
a valuable tool to help model owners detect and track the
misuse of their generated images (Fernandez et al., 2023;
Wen et al., 2023; Gunn et al., 2024; Yang et al., 2024). By
embedding distinctive markers within the generated content,
watermarking allows model owners to trace the use and
provenance of their generated data. However, while water-
marking can effectively detect direct misuse of images, its
effectiveness is limited in scenarios where the images are not
directly published but instead used as training data for new
models. In such cases, traditional watermarking methods
can only detect unauthorized use if the watermark persists
through the training process and remains detectable in the
outputs of the newly trained model—a property known as
radioactivity (Sablayrolles et al., 2020).

We turn our attention to image autoregressive models
(IARs) (Tian et al., 2024; Yu et al., 2024), which have
recently achieved new SOTA results in image generation
quality and efficiency. To date, no watermarking schemes
have been proposed for these models. Motivated by the suc-
cess of watermarking for LLMs (Kirchenbauer et al., 2023),
which share the autoregressive framework with IARs, we
introduce WIAR, the first watermarking scheme designed
specifically for IARs with radioactivity in mind. WIAR em-
beds and detects watermarks in IARs based on their token
distribution. Our extensive experimental evaluation demon-
strates that WIAR preserves radioactivity, facilitating robust
detection of unauthorized use of generated images in IARs.
In summary, we make the following contributions:

* We propose the first watermarking scheme for IARs, en-
suring radioactivity by transferring to new models.

* Our WIAR method requires no additional training, em-
beds at inference time into pre-trained models, and pre-
serves high image quality.

* We conduct a comprehensive empirical evaluation of
WIAR, showing its radioactivity across SOTA autoregres-
sive models.
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2. Background

We consider image autoregressive models, and watermark-
ing techqniues based on the autoregressive framework. Ad-
ditional related work can be found in Appendix A.

2.1. Image Autoregressive Models (IARs)

Following the standard next-token-prediction
paradigm, for a given set of already predicted to-
kens z;_1,x;_2, ..., 2, 1, IARs autoregressively predict
the next token x;. The autoregressive model py is trained
to maximize the probability pg(z;|z;—1,Ti—2, ..., T2, T1).
Early IARs applied row-by-row raster-scan, z-curve, or
spiral orders (Chen et al., 2020; Oord et al., 2016; Yu
et al., 2022; Esser et al., 2021). Recent autoregressive
approaches for image generation propose improved
self-supervised learning objectives. Visual autoregressive
models (VARs) use the next scale (or resolution) prediction
as the pretext task (Tian et al., 2024) while RARs (Yu et al.,
2024) randomly permute the tokens and then perform the
standard next token prediction, given the token positional
information. Overall, the shift in the design paradigm of
autoregressive models for images, such as VARs and RARs,
allowed them to outperform DMs in the image generation
quality and efficiency.

2.2. Watermarking Autoregressive Models.

Recently, the main efforts in the area of watermarks for
autoregressive models were directed towards designing wa-
termarks for LLMs (Kirchenbauer et al., 2023; Christ et al.,
2024). We focus on the watermarking method proposed
by Kirchenbauer et al. (2023) due to its simplicity, prac-
ticality, and performance. Their technique first randomly
divides the set of all possible tokens into a green list and a
red list, followed by softly nudging the generation towards
sampling the tokens from the green list. The detection of
the watermark does not require the access to the LLM and
is based on how many times the tokens from the green list
instead of the red list are used in a given text. Making use
of the concepts from the LLM watermarking, we propose
the first watermarking scheme for IARs.

3. Watermarking Method for IARs

IARs, like LLMs, follow an autoregressive generation
paradigm. This suggests that watermarking in ITARs should
also be based on their generated tokens. However, funda-
mental differences between IARs and LLMs make direct
adaptations of LLM watermarking techniques infeasible.
The key distinctions lie in the structure of their tokens:
LLMs operate on text tokens with a well-defined linear
order, whereas IARs generate image tokens that are spa-
tially arranged without naturally forming a one-dimensional
(1D) ordered sequence. Therefore, designing a watermark-

ing scheme for IARs requires first defining a meaningful
ordering of tokens. We do so by following the respective
inherent generation properties of different IAR types.

Next, LLM tokens are discrete and correspond to discrete
words or subwords, which are directly output without any
modifications. The mapping between tokens and text is
one-to-one. In contrast, [ARs generate tokens that repre-
sent continuous signals, which are subsequently decoded
into images. However, reversing this process by encoding
the images and then tokenizing them can result in a differ-
ent set of tokens as we analyze more in detail in Figure 1.
This discrepancy arises from the imperfect image encod-
ing and decoding. Consequently, this introduces a major
challenge for watermarking in IARs, where the watermark
detection on the level of tokens is inherently more difficult
than in LLMs and requires a robust approach. To address
this, we identify token sequences with the highest overlap
and incorporate them into the watermark detection process.
In the following sections, we detail our proposed WIAR
watermarking method, including the notation, watermark
encoding, and decoding.

Notation. We denote by u; the autoregressive unit generated
in each step. For example, for RAR, this would be a single
token id x;, whereas for VAR, this would be all the tokens
output for a given resolution, i.e., (x1, ...,z ), where ¢; is
the number of tokens for the resolution <.

3.1. Watermark Embedding

Next, we present our WIAR approach for embedding a
watermark into IARs. Intuitively, WIAR relies on red and
green lists, following (Kirchenbauer et al., 2023) and we
nudge the model to generate tokens from the green list
(and not from the red list) during inference. We present the
details in Algorithm 1, where we color-code the lines for
watermarking in blue and outline the surrounding general
image generation steps in a unified manner across different
types of IARs. The concrete instantiation of the generation
process can be adjusted based on the concrete IAR type. For
example, for VARSs, the number of tokens per resolution ¢ in
lines 6, 10, and 14 varies. In contrast, for RARs, only one
token is generated at each step. These differences do not
affect the general watermarking procedure.

Embedding a Watermark. The watermarking starts with
hashing the integer representations of the tokens u;_1 from
the previous (i — 1) resolution. We use the obtained hash
value to seed a PRG (Pseudo-Random Generator). Using
the obtained random seed (rand), we randomly partition
the vocabulary V' (codebook) into a green list green and
ared list red. The dynamic creation of the lists based on
previous token representations, rather than relying on static
lists, enables higher-quality generations. The parameter v €
(0, 1) is the scaling factor for the size of the green list. Thus,
the size of the lists are v|V| for the green and (1 — v)|V|
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for the red one. The size of the green list, -y, represents
a trade-off between watermark strength and output quality,
with smaller values of ~ resulting in a stronger watermark
at the expense of generation quality. Next, we generate the
new tokens for the resolution 7. For the individual logits
lﬁk) (where k is index in the logit vector [;) corresponding
to tokens from the green list (k € G), we add the bias
term §. We do not add the bias term to the individual logits
corresponding to tokens from the red list (k € R). The
softmax function is defined by Equation (2). Intuitively, we
softly nudge the selection of each new token x; to be from
the green list based on the biased probability vector p;.

Generating the Watermarked Image. After the token
selection, the image generation follows the standard TAR
procedure, i.e., we query the vocabulary of tokens V' to
obtain their representations z; per each token index x;, in-
terpolate to the full resolution (hx,wk ), and project with
¢; to the embedding space of image encoding. The embed-
dings are aggregated across all the resolutions. The final
embedding is decoded to the watermarked image im and
returned.

3.2. Watermark Detection

Our watermark detection then relies on taking a suspect
image, i.e., an image where we want to detect whether a
watermark was embedded. This suspect image is then en-
coded into tokens, and we check whether these tokens stem
(mainly) from the green list (and not from the red list).
Intuitively, images that consists (mainly) of tokens from the
green list are marked as watermarks. To perform detection,
we do not require access to the AR model.

Detecting the Watermark. Algorithm 2 presents our
WIAR watermark detection algorithm where we again color-
code the lines responsible for the watermark detection in
blue. Algorithm 2 follows the standard encoding from IARs
to obtain u;, which is the integer representation of tokens
for the current resolution . We use a counter C, that acts as
an accumulator and denotes the number of times that tokens
from the green list G are selected to represent the input
image ¢m. Note that the more times the selected tokens
come from the green list G, the higher the probability that
a watermark was embedded in the image ¢m. Next, in a
similar vein to watermark embedding from Algorithm 1,
we obtain a random seed from the previous autoregressive
unit u; 1. The intuition is that if we pick the same initial
seed during encoding and decoding with the same pseudo
random generator, and if the encoded previous autoregres-
sive unit in the encoded image is the same as during the
generation process, we will obtain the same seed and be
able to divide the vocabulary into the same green and red
lists. The remaining steps follow standard IAR encoding.
Eventually, to detect the watermark, we analyze whether
its tokens stem from the green or red lists. We note that

the autoregressive model fy is not used for the watermark
detection. Given the input image im, we only require the
access to the image encoder &£, the quantizer O, and the
pseudorandom generator PRG.

Robust Statistical Testing. A naive way to detect the water-
mark would rely on counting occurrences of green vs. red
list tokens. However, this approach might not be reliable
due to the inherent problem that tokens generated by an
IAR during image generation might not entirely match the
tokens resulting from encoding the exact same generated
image afterwards. This effect is caused by imperfections in
the encoding and decoding from continuous image tokens
to discrete token ids. We quantify this effect in Figure 1 and
find that the inherent token mismatch is substantial, making
watermark detection in IARs inherently more challenging
than for LLMs where each token id has an exact match
with a discrete textual token—making encoding the same
sequence lossless.

However, we find that we can overcome the problem in
IARs by relying on robust statistical testing, following the
approach by (Kirchenbauer et al., 2023), used in LLMs
to prevent paraphrasing or synonym replacement attacks.
Therefore, we make our Algorithm 2 return the output from
the statistical test instead. The null hypothesis is that Hy :
The sequence of tokens is generated with no knowledge
about the red and green lists. Since the red and green
lists are selected at random, a non-watermarked image is
expected to consists of yT" green and (1 — )T red tokens,
where T' = Zfil t; is the total number of tokens for the
image ¢tm. The watermarked image should consists of a
significantly more green tokens that a non-watermarked
image.

More formally, the color (green or red) of the next token is
a random variable X that follows the Bernoulli distribution.
For the non-watermarked image, the expectation (mean) is
E[X] = v and the Variance Var[X] = v(1 —~). The color
for all the tokens of image im can be defined as another
random variable Y that follows the Binomial distribution
with E[Y] = 4T and the Variance Var[X] = y(1 — v)T.
The probability P that a non-watermarked image would
consists of only the tokens from the green list is v7, which
is extremely small. For example, for an image with the
256 x 256 resolution, we obtain 1" = 680 tokens and this
probability P would be as low as v%%Y. This enables us
to detect the watermark by rejecting the null hypothesis
Ho. We follow (Kirchenbauer et al., 2023) and compute the

z-statistics:
z=(|slc =vT)/V/T~(1 =), (1)

where |s|¢ is the number of the green tokens in the encoded
image. We detect the watermark when the H, is rejected
for z > 7, where 7 is some pre-defined threshold.
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4. Empirical Evaluation

We present our setup, main results, and ablations regarding
performance of our WIAR watermark. Additional results
can be found in Appendix C.

Experimental Setup. For IARs, we consider VAR and
RAR as two representative architectures, using the code and
models provided in their respective code repositories. We
run the TAR experiments using ImageNet, with § = 2,~ =
0.25 for RAR and § = 6, = 0.25 for VAR. Additional
information is given in Appendix B.

Metrics. We follow Kirchenbauer et al. (2023) and report
TPR@FPR=1% for WIAR, which measures the true pos-
itive rate (TPR) at a 1% false positive rate (FPR) when
detecting watermarked images. In this case, TPR = 1% cor-
responds to random guessing, whereas a significantly higher
TPR (>> 1%) indicates a robust watermark.

In the last step of the WIAR method, we run the statistical
z-test (see Equation (1)) to detect the presence of the water-
mark when z > 7. To ensure low probability (3 x 10~5) of
false-positives, i.e., rejecting the null hypothesis Hy when
the image is not watermarked, we set a high threshold 7 = 4.

Our Watermark for IARs is Radioactive. We observe
that our new watermarks for IARs successfully transfer from
M to the subsequently trained M, IARs. In the extreme
scenario, see Table 2, where we fine-tune M5 on a single
image, the watermark exhibits even perfect radioactivity
(100% transfer). In the practical scenario, when fine-tuning
IARs on 40k images, in Table 1, we observethat the TPR at
1% FPR is around 30-40%, i.e., still significantly higher than
random guessing. Thereby, our WIAR watermark remains
the only watermark that consistently transfers between mod-
els of high-generation quality.

Table 1: WIAR is radioactive. We report TPR @FPR=1%
(i.e., 1% corresponds to random guessing).

Type of M1 Typeof Mo Outputof My  Output of Mo
" "VAR-dI6 ~ VARI6 ~ 940 ~ ~ "36.1 ~ °
VAR-d20 VAR-d20 94.7 36.5
VAR-d24 VAR-d24 97.1 38.1
VAR-d30 VAR-d30 95.5 37.2
" TRARB. T TRARB T T 92 T T 7 T 337 T 7
RAR-L RAR-L 90 32
RAR-XL RAR-XL 94 36
RAR-XXL RAR-XXL 90 29

Table 2: Extensive fine-tuning on a single watermarked
sample. We use the metrics from Table 1.

Type of M1 Typeof Mo Outputof M7  Output of Mo
VAR-d16 VAR-d16 100 100
VAR-d20 VAR-d20 100 100
VAR-d24 VAR-d24 100 100
VAR-d30 VAR-d30 100 100

" "RARB~ ~ "RARB ~ T 100 ~ ~ T 100 ~ °
RAR-L RAR-L 100 100
RAR-XL RAR-XL 100 100
RAR-XXL RAR-XXL 100 100

Watermarking vs. Generation Quality. We analyze the
impact of our WIAR on the quality of generated images

100%

T Mean = Std Dev
0w
é‘ 60% } Type of RAR Avg. Token Overlap
H
S o RAR-B 65.45% £ 9.04%
£ RAR-L 67.62% £ 7.21%
© E I T } RAR-XL 65.75% + 6.38%
} RAR-XXL 65.68% + 8.02%
o 2 4 6 8 10
Scale Inde
cale Index (b) RAR.

(a) VAR.
Figure 1: Token overlap between generated vs encoded
images for VAR and RAR.

(measured in FID score (Heusel et al., 2017)) in Table 3.
The results show that our WIAR only marginally affects im-
age quality, highlighting that our method is able to provide
robust provenance tracking without sacrificing performance.

Table 3: Impact of watermarking on image generation
quality.

Model # of Parameters Clean FID | ‘Watermark FID |
VAR-d16 310M 6.50 7.41
VAR-d20 600M 5.77 6.63
VAR-d24 1.0B 5.25 6.21
VAR-d30 2.0B 4.96 592

RAR-B 216M 5.02 6.16

RAR-L 461M 4.73 5.78
RAR-XL 955M 4.66 5.45

RAR-XXL 1499M 4.50 5.21

Token Mismatch in Decoded (Generated) vs. Encoded
Images. We identify an inherent challenge in IAR water-
marking arising from imperfect image encoding and decod-
ing. Specifically, a model generates tokens 7', which are
then decoded into a generated image. When the exact same
image is subsequently encoded and tokenized, it produces
a different set of tokens, 7", which do not fully match the
original tokens 7', i.e., T' # T. This differs from LLMs,
where the tokens decoded to the generated zext match per-
fectly the tokens obtained from the tokenized exact same
text. The discrepancy decreases the watermark detection
rate of WIAR, as it relies on the correct tokens to deter-
mine whether they belong to the green or red list. We
quantify the token overlap in Figure la for VAR and in
Figure 1b for RAR, respectively. For VAR, the initial and
final scales (resolutions) exhibit the highest token overlap.
This is likely because the initial resolutions capture broad
structural features, while at the final resolution, the image is
already refined, resulting in fewer token changes. For RAR,
which only generates one token at a time, we observe that
the average token overlap is similar among all model sizes,
namely around 65%.

5. Conclusion

We introduced WIAR, the first watermarking method for
IARs, designed to ensure radioactivity and enable prove-
nance tracking even when generated images are used for
training new IAR models. Through extensive experiments,
we demonstrated the effectiveness of our approach in pre-
serving watermark radioactivity, providing a robust solution
for detecting unauthorized use of generated images.
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Watermarking Image Autoregressive Models

A. Additional Related Work
A.1. Image Generative Models

Diffusion Models (DMs) (Ho et al., 2020; Song & Ermon,
2020) are trained by progressively adding noise to the data
and then learning to reverse this process. The forward dif-
fusion process adds Gaussian noise € ~ A (0, I) to a clean
image z, yielding a noisy sample x; <+ \/c;x + /1 — e,
where ¢ € [0, 7] is the diffusion timestep, and oy € [0, 1]
is a decaying parameter with og = 1 and ap = 0. The
model fy is trained to predict the noise ¢ by minimizing:
L(z,t, 6 fo) = |le — fo(xt,t)||3. In conditional settings, fp
is guided by an additional input y, such as a class label (Ho
et al., 2020) or a text embedding from a pretrained encoder
like CLIP (Radford et al., 2021).

Latent diffusion models (LDMs) (Rombach et al., 2022)
improve DMs by conducting the diffusion process in the
latent space instead of in the pixel space, which significantly
reduces computational complexity, making training scalable
and inference more efficient. For the LDMs, the encoder £
transforms the input x to the latent representation z = £(x)
and the diffusion loss is formulated as £(z, ¢, €; fp) = ||e —

oz, t)]3-

Elucidated diffusion models (EDMs) (Karras et al., 2022),
in contrast, operate in the pixel space (directly on x instead
of on its latent representation z).

A.2. Image Autoregressive Models (IARs)

RARs (Randomized Autoregressive Models) (Yu et al.,
2024) randomly order the tokens and then train the model
to correctly predict the next token in the sequence. Each
token is assigned position in the sequence, so the pretext
task in RARs facilitates the multidirectional representation
since each token can be predicted from any set of previ-
ously given other tokens. This reflects the nature of images
where a given part of the image might be influenced by any
not necessarily neighboring parts. The randomization of
token order in RARSs is slowly reduced (annealed) from fully
random order to perfect raster-scan order.

A.3. Watermarking Diffusion Models.

SOTA watermarking techniques for DMs are learning-
based (Zhao et al., 2023; Fernandez et al., 2023; Wen et al.,
2023; Gunn et al., 2024). These watermarking methods
have three key components: a watermark (w), an encoder
(E) and a decoder (D). The encoder receives an input
image X and the watermark w as input and is trained to
embed the watermark into the image, while not reducing
the image quality. Simultaneously, the decoder is trained
to reconstruct the watermark given the watermarked im-
age. This can be formulated as: w = D(E(X,w)) and

X ~ X, = E(X,w). Watermarking methods for LDMs,
can target different points of the diffusion process, such as
the initial noise prediction (Wen et al., 2023; Gunn et al.,
2024) or the decoding process (Fernandez et al., 2023).

Recipe Method. Zhao et al. (2023) proposed a method that
utilizes a pretrained encoder-decoder structure to embed a
predefined binary signature into the training data of an EDM.
The EDM is then trained on this watermarked dataset, caus-
ing it to reproduce the watermark in its generated images.
A watermark decoder is subsequently used to extract and
verify the binary signature from these outputs. We refer to
this approach to as the Recipe method.

Stable Signature. Fernandez et al. (2023) introduced a wa-
termarking technique for LDMs (Rombach et al., 2022),
leveraging the model’s structure. The method fine-tunes the
latent decoder to embed an invisible binary signature in ev-
ery generated image. This signature can later be recovered
using a pretrained watermark extractor.

Tree-Ring.Wen et al. (2023) proposed embedding a struc-
tured pattern into the initial noise vector used in DM sam-
pling. By structuring these patterns in the Fourier space,
the method achieves a high level of robustness against com-
mon image transformations, such as cropping, dilation, and
rotation. Unlike the Stable Signature approach, which mod-
ifies the decoder, Tree-Ring influences the sampling process
itself, allowing for watermark detection by inverting the
diffusion process and analyzing the retrieved noise vector.

PRC Watermarking. Gunn et al. (2024) introduced Pseudo
Random Code (PRC) watermarking, which utilizes the ran-
dom generation of an initial noise vector. This noise vec-
tor is sampled based on a pseudorandom error-correcting
code (Christ & Gunn, 2024), enabling watermark detection.
Given an image, the original noise vector can be recon-
structed, allowing the identification of the specific random
code used to generate the image.

A.4. Watermarking Properties

In text-to-image models, watermarks are designed to be im-
perceptible to the human eye yet detectable by a specialized
detection algorithms. Image watermarks must possess the
following essential properties: (1) Undetectability ensures
that the watermark remains imperceptible to unauthorized
parties, (2) Unforgeability guarantees that an adversary can-
not reproduce the same watermark, (3) Tamper-evidence
allows for the detection of any modifications to the wa-
termark, and (4) Robustness ensures that the watermark
remains detectable even under adversarial attacks.
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B. Experimental Details

The RAR and VAR M, models are trained on 40000 gen-
erated watermarked ImageNet images for 10 epochs, with
batch size = 4, learning rate = le — 4 and a 256 x 256 reso-
lution. The other model specific hyperparameters are taken
from the original training setup as specified in (Yu et al.,
2024) and (Tian et al., 2024). For a more consistent train-
ing we utilize only major-row scan in RAR for the whole
fine-tuning process. For RAR we generate images with a §
of 2.0 and for VAR with a § of 6.0. For both architectures
we utilize a y of 0.25.

C. Additional Experiments

Table 4: Extensive fine-tuning on a single watermarked
sample. We extend our analysis from Table 2. We use the
metrics from Table 1.

Type of M1 Typeof Mo  Outputof M7  Output of Mo
VAR-d16 VAR-d30 100 100
VAR-d20 VAR-d16 100 100
VAR-d24 VAR-d16 100 100
VAR-d30 VAR-d16 100 95.2

" TRARB~ T RARXXL ~ T 100 ~ ~ ~ T 100 ~
RAR-L RAR-B 100 100
RAR-XL RAR-B 100 100
RAR-XXL RAR-B 100 93.5

Attacks. We perform a wide range of attacks, namely: 1)
Noise : Adds Gaussian noise with a std of 0.1 to the image,
2) Kernel : Noise attack + application of a Gaussian blur
with a kernel size of 7, 3) Color: Color jitter with a random
hue of 0.3, saturation scaling of 3.0 and contrast of 3.0,
4) Grey : Transforming the image to greyscale, 5) JPEG :
25% JPEG compression, 6) SD-VAE : Reconstruction attack
based on encoding-decoding with the Stable Diffusion 2.1
VAE, 7) CtrlRegen+ : Controlled regeneration from noise
in the latent space following (Liu et al., 2025).

The CtrlRegen removal attack removes SOTA watermarks
such as Tree-Ring (Wen et al., 2023) and Stable Signa-
ture (Fernandez et al., 2023), but WIAR is resilient to it
and many other attacks (mean of 5 runs,lk images) with
TPR>>1% @FPR=1%.

Table 5: We analyze the robustness of WIAR under dif-
ferent attacks.

Model] / Attacks— None Noise Kernel Color Grey JPEG SD-VAE CtrlRegen+

RAR-B 96.50 16.58 14.04 12.73 38.20 81.57 85.33 16.20
RAR-L 95.70 15.33 12.59 12.28 32.00 80.32 83.74 10.00
RAR-XL 96.60 18.95 16.67 13.95 36.70 85.28 87.58 17.80
RAR-XXL 93.80 14.44 12.86 11.52 25.60 78.05 79.81 4.40
VAR 16 99.30 45.32 42.80 56.20 88.10 88.20 54.00 4.70
VAR 20 98.30 50.20 47.00 59.80 91.00 90.50 62.40 8.50
VAR 24 99.30 51.10 49.10 60.30 90.50 90.40 64.40 8.40
VAR 30 99.00 49.20 45.80 57.10 87.60 87.80 60.20 6.90

Watermarking vs. Generation Speed. We report the wall-
clock time (in seconds) for an image generation on NVIDIA

A40 GPU without and with WIAR, which adds a relatively
small overhead, similarly to LLM watermarking.

Table 6: Impact of watermarking on image generation
speed.

Setup RAR-B RAR-L  RAR-XL  RAR-XXL VAR 16 VAR20  VAR?24 VAR 30
. .
original 4.043 4.129 5.430 6.623 0.399 0.428 0.462 0.531
WIAR 6.781 6.889 8.201 9.411 0.566 0.587 0.605 0.641
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Figure 2: Comparison of the token overlap at the differ-
ent scales (resolutions) and for different depths (16, 20,
24, and 30) of the VAR model.
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D. Algorithms

The notation of Algorithm 1 and Algorithm 2 follows Tian
et al. (2024) with the following operations:

* Interpolate: Up- or down- scaling to the respective resolu-
tion.

* Partition: Split the vocabulary into a green and red list
given a random number and size of the green list.

* Bias: Bias all logits that are part of the green list with
the delta value, i.e., adding it to the logits of all green list
tokens.

* Lookup: Lookup the tokens in the codebook V and return
the quantized values.

The softmax in line 12 is defined as:
exp(l,(.k)—i-é)
1 - , keG
Sier exp(S)+3, g exp(1S” +9) )

(k)

exp(1$™)
; > k € R.
Sierexp()+5, g exp(it) +6)’

p; =

Algorithm 1 Image Generation for [ARs with WIAR: Wa-
termark Embedding
Inputs: autoregressive model fy, vocabulary V', decoder
D
Hyperparameters: steps K, resolutions (h;,w;)X ,
t; = h; - w;, scaling ratio -y, bias constant §
€ < init()
uo  {initial seed}
fori=1to K do
(l1,...,1t,) < fo(interpolate(e, h;,w;))
seed + hash(u;_1)
rand <— PRG(seed)
Green, Red <« Partition(V, rand, 7y)
for j =1tot; do
l; < Bias(Green, l;,9)
p;j < Softmax(l;)
x; < Sample(p;)
end for
Uy <— (1‘1, R ,xti)
z; < lookup(V, u;)
z; + interpolate(z;, hy, W)
e+ e+ ¢i(z)
end for
im + D(e)
Return: watermarked image im

Algorithm 2 Image Encoding for IARs with WIAR Watermark
Detection

Inputs: image im, encoder &, quantizer Q to vocab V'
Hyperparameters: steps K, resolutions (h;, w;)X ,, ra-
tio ~y
e < &(im)
uo + {initial seed}
C+0
for i = 1to K do
u; < Q(interpolate(e, h;, w;))
seed « hash(u;_1)
rand + PRG(seed)
Green, Red <« Partition(V, rand, 7)
C' < Count(u;, Green)
z; + lookup(V, u;)
z;  interpolate(z;, hx, wi)
e e— op(2k)
end for
Return: StatisticalTest(H(C'))




