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Abstract
Differentially private stochastic gradient descent (DP-SGD) trains

machine learning (ML) models with formal privacy guarantees for

the training set by adding random noise to gradient updates. In

collaborative learning (CL), where multiple parties jointly train a

model, noise addition occurs either (i) before or (ii) during secure

gradient aggregation. The first option is deployed in distributed DP

methods, which require greater amounts of total noise to achieve

security, resulting in degraded model utility. The second approach

preserves model utility but requires a secure multiparty computa-

tion (MPC) protocol. Existing methods for MPC noise generation

require tens to hundreds of seconds of runtime per noise sample

because of the number of parties involved. This makes them im-

practical for collaborative learning, which often requires thousands

or more samples of noise in each training step.

We present a novel protocol for MPC noise sampling tailored

to the collaborative learning setting. It works by constructing an

approximation of the distribution of interest which can be effi-

ciently sampled by a series of table lookups. Our method achieves

significant runtime improvements and requires much less commu-

nication compared to previous work, especially at higher numbers

of parties. It is also highly flexible – while previous MPC sam-

pling methods tend to be optimized for specific distributions, we

prove that our method can generically sample noise from statisti-

cally close approximations of arbitrary discrete distributions. This

makes it compatible with a wide variety of DP mechanisms. Our

experiments demonstrate the efficiency and utility of our method

applied to a discrete Gaussian mechanism for differentially private

collaborative learning. For 16 parties, we achieve a runtime of 0.06

seconds and 11.59 MB total communication per sample, a 230×
runtime improvement and 3× less communication compared to

the prior state-of-the-art [38] for sampling from discrete Gaussian

distribution in MPC.

∗
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1 Introduction

Differentially private stochastic gradient descent (DP-SGD) [1] is a

model training algorithmwhich adds calibrated amounts of random

noise to gradient updates in order to obtain rigorous differential

privacy (DP) guarantees [8] for the training data. In collaborative

learning (CL) algorithms [15, 23, 24, 28], which allow many par-

ties to work together to train a model, there is no central party

who is trusted to add the noise. Adapting DP-SGD to this setting

requires the addition of noise either (i) before or (ii) during secure

aggregation of gradient updates.

The former option, utilized in distributed DP [10, 15, 22, 23]

methods, is relatively straightforward: each party adds some noise

locally to their update. This confers the aggregated output with a

DP guarantee due to the combined noise. However, this approach

introduces a vulnerability. If multiple parties collude by sharing

their local noise values, they can subtract them from the aggregated

output to partially de-noise it. To compensate for this attack each

party must add a larger amount of noise, proportional to the num-

ber of expected colluding adversaries. This extra noise results in

degraded model utility compared to the centralized setting.

Alternatively, DP noise may be sampled inside of a secure multi-

party computation (MPC) protocol for gradient aggregation. MPC

allows a set of parties to compute a function on a pool of pri-

vate inputs, while guaranteeing that each party’s input is confiden-

tial [5, 25, 38]. UsingMPC to sample noisemeans that no party views

any part of the noise until after it has been combined with the aggre-

gated updates. As a result, this approach achieves maximal utility

in collaborative learning without requiring a trusted central party.

However, it comes at the cost of increased computational overhead.

Existing methods for MPC noise generation are either limited to

two-parties [5] or do not scale well to higher numbers of parties [25,

38]. Runtimes in the tens of seconds per sample with as few as four

parties (Table 1) pose steep limitations on their practicality in the

collaborative learning setting, which may involve tens to hundreds

of parties and thousands or more noise samples per training round.



Table 1: Comparison with prior work [38]. Comparison of

the time and total communication required per sample from the

discrete Gaussian distribution with a standard deviation of 967,

as used in our DP-CL experiments. Prior work is evaluated using

GMW protocol with triple generation using OT-based (semi2k) and
HE-based (temi) protocols.

Parties Ours Prior (OT) Prior (HE)

2

LAN (s) 0.09 0.27 1.24

WAN (s) 0.1 598 631

Comm. (MB) 0.72 0.29 0.29

4

LAN (s) 0.07 15.05 3.36

WAN (s) 0.08 1.457K 1.459K

Comm. (MB) 1.91 6.82 1.67

8

LAN (s) 0.06 27.49 6.57

WAN (s) 0.08 2.612K 2.613K

Comm. (MB) 3.3 31.51 7.71

16

LAN (s) 0.06 50.17 12.78

WAN (s) 0.25 4.942K 4.916K

Comm. (MB) 11.59 134.36 32.91

In this work we present a method for MPC noise sampling with

greatly improved scaling to higher number of parties, making it

more suitable for collaborative learning. In addition, unlike previ-

ous MPC noise generation methods which tend to be optimized for

particular distributions [5, 25, 38], our method is highly generic. It

can accommodate any discrete distribution with a known probabil-

ity mass function, making it versatile to different applications. For

example, DP algorithms are an ongoing area of study. Noise from

a variety of different distributions may be utilized in existing and

future work [12].

These advances are made possible by our novel approach to the

problem.We present the overview of our method in Figure 1. Rather

than applying generic MPC to compute the sampling algorithm

for a distribution of interest 𝑋 as in previous work [5, 25, 38], our

method takes𝑋 generically as input and constructs 𝑌 , a statistically

close approximation which can be sampled as a series of table

lookups. We then apply an efficient private table lookup protocol

to realize an MPC sampler for 𝑌 , resulting in much more scalable

noise generation.

Summary of Contributions. We propose a new method for sam-

pling random noise in MPC with the following contributions:

• Efficiency. Our method achieves substantial improvements in

runtime and communication compared to previous work, espe-

cially at higher numbers of parties. For 32 parties, our method

samples from the discrete Gaussian distribution in 0.21 seconds

with 42 MB of total communication, representing 450× and 13×
improvement over previous work respectively (see Table 1). We

also note that our protocol achieves significant improvement

even for 4 parties.

• Flexibility. Our method is highly generic. It takes the probability

mass function of any discrete distribution as input, and compiles

it into an MPC sampler. We prove that the outputs of our sampler

are statistically indistinguishable from the input distribution.

• Collaborative Learning Benchmarks. We adapt previous work to

derive parameter settings appropriate to differentially private

collaborative learning, and benchmark them in terms of efficiency

and model utility. Our experiments show that the reduced noise

afforded via MPC sampling results in models with improved

accuracy compared to distributed DP that needs to account for

colluding clients.

• Code. We provide our code at https://github.com/cleverhans-

lab/Secure_Noise_Sampling_DP_CL.

2 Background

2.1 Noise Sampling for Differentially Private
Collaborative Learning

The two prior approaches for sampling noise in collaborative learn-

ing that are most relevant to our work are:

Distributed DP. In this approach [6, 10, 14, 15, 22, 23], parties

locally sample noise and use an MPC protocol for aggregation such

that the aggregated noise follows a certain distribution which con-

fers a DP guarantee. For example, in [23], the authors demonstrate

that if each party locally samples a discrete Gaussian noise indepen-

dently, the summation of those discrete Gaussian samples forms

a distribution 𝑋 ; they further prove the DP guarantee for the al-

gorithm that adds noise sampled from 𝑋 . However, for security

against 𝑡 colluding (out of 𝑛 parties), each party needs to add noises

as if only 𝑛 − 𝑡 parties will sample noise to meet the desired ag-

gregate distribution 𝑋 . Thus, for high corruption thresholds, these

works add a large amount of noise to the data, reducing the model’s

utility.

DP using MPC. In this setting [5, 25, 38], parties use an MPC

protocol to sample from a desired distribution required for the DP

guarantee. These works focus on designing efficient algorithms or

smaller circuits for sampling in MPC from a specific distribution

like the Gaussian or Laplace distributions.

Dwork et al. [10] observe that the generation of a geometric

sample can be reduced to independent Bernoulli samples for each bit

with a different bias. For a 𝜅 bit Geometric sample with probability

𝑝 , the 𝑖-th bit 𝑏𝑖 is defined by Bernoulli sample with probability

𝑝2
𝑖 /(1 + 𝑝)2𝑖 . [5] use this observation with their efficient sampling

algorithm for biased coins to generate Geometric noise for DP in

2-PC. They design an efficient oblivious stack algorithm with pop
and reset operations in order to hide the access pattern and avoid

iterating for the binary expansion of the bias.

In [4], the authors propose an algorithm for sampling from dis-

crete Gaussian distribution for differential privacy using Bernoulli,

Geometric, and Laplace distribution for central DP applications. [38]

follows a similar structure to the central DP algorithm for sampling

from discrete Gaussian distribution in MPC. They use the method

described in [10] to generate geometric samples from Bernoulli

samples. Their main contribution is to improve the sampling of

Bernoulli noise when 𝑝 = 𝑒−𝛾 and 𝛾 is private. They observe that

this is only required to go from Laplace noise to Gaussian noise

in [4], where 𝛾 = 𝑎/𝑏 and 𝑏 is public while 𝑎 is private and has 2𝜅

bits. Thus, they can sample 2𝜅 biased coins with public biases and

combine them according to the bit decomposition of 𝑎. Addition-

ally, they also optimize the acceptance rate when going from the
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Figure 1: Overview of theMethod. 1 Sampling Noise for Differential Privacy. Our method takes as input a target distribution𝑋 generically.

It finds 𝑌 , an approximation of 𝑋 which is statistically indistinguishable, and can be sampled using a series of random table lookups which

we call a “dice ensemble”. Algorithm 4 constructs a dice ensemble appropriate to the target distribution. Then, Protocol 4 can be used to

sample 𝑌 efficiently in MPC. Our method substantially enhances scalability to higher numbers of parties while supporting any discrete

distribution. 2 Differentially Private Collaborative Learning. Our method is leveraged with a secure gradient aggregation protocol to

provide a collaborative learning protocol with differential privacy guarantees.

Laplace sample to the Gaussian sample. Further, [18] improves [38]

by updating their Bernoulli sampling algorithm to use the oblivious

stack algorithm from [5].

2.2 Differentially Private Collaborative
Learning Algorithms

In a collaborative training setting, two types of granularity for

privacy are often considered based on the nature of the clients:

(i) client-level privacy [20, 23, 28], useful for clients like personal

devices (e.g., cellphone) that contains information about one indi-

vidual; and (ii) data point-level privacy [6, 14, 15, 17, 24], useful for

clients that hold data from many different individuals (e.g., hospi-

tals) where each individual’s privacy shall be considered.

Federated Learning (FL) [27] is one of the earliest proposed

collaborative training methods. In FL, each client uses local data to

obtain a model update and shares it with the server for aggregation.

In this work, we focus on leveraging the proposed method of noise

sampling in MPC on FL to protect data point-level privacy.

Other than FL-based collaborative training methods, another

type of DP-CL method involves querying teacher models trained

on local private data to label public data points (with DP). The

labeled pairs are then used to train a centralized student model.

Such frameworks include Private Aggregation of Teach Ensembles

(PATE) [31] and Confidential and Private Collaborative (CaPC)

Learning [6]. Our noise sampling in MPC can also be used to obtain

the DP guarantees in these frameworks, for example, by replacing

the role of Privacy Guardian (a third-party responsible for noise

addition) in CaPC.

2.3 DP Fine-Tuning for Soft Prompts
Soft prompts refer to the list of weights prepended to the embed-

dings of the inputs to language models (LM). These weights can

be learned in the same manner as regular model weights on down-

stream tasks, and they can leak private information just as the

model weights can. Soft prompts have the benefit that they are

usually low in dimension so the cost of training is also low. Prior

work [7, 21, 35] has demonstrated DP fine-tuning for soft prompts

in a centralized manner. In this work, we extend this approach to a

collaborative training scenario.

3 Preliminaries & Notation

3.1 Secure Multiparty Computation
Secure multi-party computation (MPC) enables a group of parties

to collaboratively compute a function 𝑓 on their private data while

revealing nothing beyond the output. The function 𝑓 is represented

as a circuit 𝐶 with boolean and/or arithmetic gates that can be

evaluated using a generic MPC protocol. MPC protocols can be

designed to achieve different levels of security depending on the ad-

versarial model. In this work, we focus on the semi-honest security
model with all-but-one corruption. In the semi-honest model, the

corrupt parties may collude to infer additional information without

deviating from the protocol. In this work, we use the Boolean to

Arithmetic shares protocol from [19] to realize the functionality for

converting Boolean shares of random indices to their bitwise en-

cryptions. We also use a threshold homomorphic encryption (THE)

scheme to enable the parties to do a majority of the computation

non-interactively/locally.

3.2 Representing Approximation Error in
Constructed Distributions

Given a discrete, finite sample space Ω, random variable 𝑅 which

maps Ω to R, and a probability mass function 𝑓 : R ↦→ [0, 1], in this

work we are interested in constructing approximations of 𝑓 . We will

often construct an augmented sample space Ω ∪ {⊥} where ⊥ ∉ Ω
is a special element which represents approximation error. Since Ω
is discrete and finite, we can always construct 𝑅′ : Ω ∪ {⊥} ↦→ R
such that 𝑅′ (⊥) = 𝜃 where 𝜃 ≠ 𝑅(𝑥) for all 𝑥 ∈ Ω. However,
for brevity in the remainder of the paper we will abuse notation

by rendering some probability mass functions with the signature

𝑓 : R ∪ {⊥} ↦→ [0, 1]. This gives us 𝑓 (⊥) as convenient shorthand
for discussing the amount of probability mass allocated to this

special error element.

3.3 Statistical Indistinguishability
We use a formalization of statistical indistinguishability from [16].

Given two sequences of discrete distributions parameterized by a

statistical security parameter 𝜆, 𝑋 = (𝑋𝜆)𝜆∈N and 𝑌 = (𝑌𝜆)𝜆∈N,

we will use the following formulation of total variation distance,
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also parameterized by 𝜆:

𝑆𝐷𝑋,𝑌 (𝜆) :=
1

2

·
∑︁

𝑧∈0,1∗

���Pr

[
𝑋 (1𝜆) = 𝑧

]
− Pr

[
𝑌 (1𝜆) = 𝑧

] ��� .
We say that𝑋 and𝑌 are statistically indistinguishable if 𝑆𝐷𝑋,𝑌 (𝜆)

is a negligible function of 𝜆. That is, if for any polynomial p : N→
R+ there exists an integer 𝑁 such that for all 𝜆 ≥ 𝑁 we have

𝑆𝐷𝑋,𝑌 (𝜆) ≤
1

p(𝜆) .

3.4 Discrete Gaussian Distribution
Let scale and location parameter 𝜎, 𝜇 > 0. The discrete Gaussian [4]

is a probability distribution supported on the integers Z denoted

by NZ (𝜇, 𝜎2) and defined as the follows:

∀𝑥 ∈ Z, P
𝑋←NZ (𝜇,𝜎2 )

[𝑋 = 𝑥] =
exp

(
−(𝑥−𝜇 )2

2𝜎2

)
∑

𝑦∈Z exp

(
−(𝑦−𝜇 )2

2𝜎2

) .
3.5 Differential Privacy
To reason about and bound privacy leakage in machine learning

training algorithms, differential privacy (DP) [8, 9, 11, 12] is the

current gold standard and working definition of privacy:

(𝜖, 𝛿)-DP: A randomized algorithm 𝑀 : X ↦→ Y satisfies (𝜖, 𝛿)-
DP if for any adjacent datasets that differ by only one data record

𝑥, 𝑥 ′ ∈ X, some algorithm output 𝑆 ⊂ Y the algorithm𝑀 satisfies

Pr[𝑀 (𝑥) ∈ 𝑆] ≤ 𝑒𝜖 Pr

[
𝑀

(
𝑥 ′

)
∈ 𝑆

]
+ 𝛿.

The 𝜖 is also known as the privacy budget, which quantifies

the privacy leakage of the algorithm 𝑀 . When 𝛿 = 0, it is pure

differential privacy (𝜖-DP). When 𝛿 > 0, it is approximated DP and

it is a common relaxation of pure DP.

Concentrated DP (CDP) [3, 13]: A randomized𝑀 : X ↦→ Y satis-

fies
1

2
𝜖2
-DP iff for any adjacent datasets that differ by only the addi-

tion or removal of one data record 𝑥, 𝑥 ′ ∈ X, D𝛼 (𝑀 (𝑥) | |𝑀 (𝑥 ′)) ≤
1

2
𝜖2𝛼, ∀𝛼 ∈ (1,∞), whereD𝛼 (·| |·) is the Rényi divergence of order

𝛼 , defined as D𝛼 (𝑃 | |𝑄) = 1

𝛼−1
log E

𝑋←𝑃

(
𝑃 (𝑋 )
𝑄 (𝑋 )

)𝛼−1

.

Theorem 1 (Privacy forMultivariateDiscreteGaussian [4]).

Let 𝜎 > 0 and 𝜀 > 0. Let 𝑞 : X → Z𝑑 satisfy Δ2/𝜎2 ≤ 𝜀2 for all
𝑥, 𝑥 ′ ∈ X differing on a single entry, Δ = | |𝑞(𝑥) − 𝑞(𝑥 ′) | |2. Define
a randomized algorithm 𝑀 : X𝑛 → Z𝑑 by 𝑀 (𝑥) = 𝑞(𝑥) + 𝑌 where
𝑌𝑗 ← NZ (0, 𝜎2) independently for all 𝑗 ∈ [𝑑]. Then 𝑀 satisfies
1

2
𝜀2-concentrated differential privacy.

4 Method
We present a secure multiparty computation protocol which allows

a set of parties to efficiently sample a hidden noise value from

a distribution. For many distributions of interest in differential

privacy, sampling typically requires the computation of non-linear

functions which are inefficient in MPC. The key idea of our method

is to construct statistically indistinguishable approximations of

target distributions which can be sampled via more efficient means.

In particular, we design amethod for approximating distributions by

a series of uniform random table lookups. We present the overview

of our method in Figure 1.

Section 4.1 shows how we can compose uniform table lookups

to construct a statistically indistinguishable approximation of any

discrete probability distribution. Section 4.2 shows an efficient mul-

tiparty computation protocol for sampling from these approximated

distributions. Section 4.3 discusses the application of our MPC noise

sampler to differentially private collaborative learning by way of

the discrete Gaussian mechanism.

4.1 Approximating Distributions with Table
Lookups

Section Outline. In a uniform table lookup, we fix a table of values

and output an entry of the table uniform randomly (Definition 1).

This operation is equivalent to rolling a fair die, and can be com-

puted highly efficiently within an MPC protocol as we will see in

Section 4.2. In this section, we show how we can approximate a

sampling process for any discrete distribution of interest by using

a sequence of uniform random table lookups, and characterize a

tradeoff between statistical distance and number of tables.

To achieve this result, we begin with Algorithm 1 which approx-

imates a target distribution using a random single table lookup.

Lemma 3 proves a relationship between approximation error and

the size of the table. With this as a building block, we then present

Algorithm 4 which achieves a greatly improved tradeoff via the

composition of lookups from multiple smaller tables. Theorem 6

shows that the statistical distance between the target and approx-

imated distributions declines exponentially as a function of the

number of tables. We leverage this result to show statistical indis-

tinguishability.

4.1.1 Approximation with One Table Lookup While we use the term

“table lookup” to evoke mechanical similarities between our method

and other cryptographic protocols, tables are highly general objects.

While proving our theoretical results, we will disambiguate using

the term “die” which specifically indicates a probability distribution

induced by uniformly sampling entries from a table (Definition 1).

Definition 1. A die 𝑑 is an 𝑛-sized array that encodes a finite
discrete probability distribution. To sample from the distribution that

𝑑 encodes, we take 𝑖
$← [𝑛], a uniform random sample over the indices

in the array, and output 𝑑 [𝑖], the 𝑖𝑡ℎ element in the array. Thus the
probability mass function 𝑓𝑑 corresponding to 𝑑 is precisely

𝑓𝑑 (𝑥) ≡
freq𝑑 (𝑥)

𝑛

where freq𝑑 (𝑥) is a function that gives the number of times the
element 𝑥 appears in 𝑑 .

We can construct a die to approximate any given discrete proba-

bility distribution. For example, a sampling algorithm defined over

32-bit seeds can be perfectly encoded by a die with 2
32

faces. Algo-

rithm 1 formalizes a simple method for approximating distributions

using single dice. We will analyze it briefly and then iterate on this

method to acquire finer approximations.

Lemma 1. 𝑑 = 1𝐷𝐴(𝑓 , 𝑛) is defined for arbitrary 𝑛 > 0 ∈ N, and
arbitrary probability mass functions 𝑓 with finite support.

Proof: To see this, observe that step 4 of Algorithm 1 will never

fail to find 𝑡 entries that contain ⊥. This is because by the definition
of a discrete probability distribution,

∑
𝑥∈𝑠𝑢𝑝𝑝 (𝑓 ) 𝑓 (𝑥) = 1 and

4



Algorithm 1 1DA (1-Die Approximation)

Input: A probability mass function 𝑓 : R ↦→ [0, 1] corresponding
to a finite discrete probability distribution; a die size 𝑛.

Output: A die 𝑑 that approximates 𝑓 .

1: 𝑑 ← an 𝑛-sized array, all elements initialized to ⊥.
2: for all 𝑥 ∈ 𝑠𝑢𝑝𝑝 (𝑓 ) do
3: 𝑡 ← ⌊𝑓 (𝑥) · 𝑛⌋
4: find 𝑡 entries of 𝑑 that contain ⊥. Write 𝑥 in these entries

instead.

5: end for
6: return 𝑑 .

thus

∑
𝑥∈𝑠𝑢𝑝𝑝 (𝑓 ) ⌊𝑓 (𝑥) ·𝑛⌋ ≤ 𝑛. The left hand side of the inequality

describes the total number of ⊥ entries which must be overwritten,

and 𝑛 is the number of ⊥ entries when 𝑑 is initialized. Since we

assume that 𝑓 is supported on a finite set, we also know that the

for loop will always terminate. □
We measure the effectiveness of 𝑓𝑑 as an approximation for 𝑓 by

comparing the respective probability masses allocated to elements

of 𝑠𝑢𝑝𝑝 (𝑓 ).

Definition 2. Given a target probability mass function 𝑓 : R ↦→
[0, 1] and an approximation probability mass function 𝑔 : R∪{⊥} ↦→
[0, 1], the approximation error function 𝜁 : R ↦→ R is defined

𝜁 (𝑥) ≡ |𝑓 (𝑥) − 𝑔(𝑥) |.
When it is clear from context that the function 𝑔 is constructed to
approximate the function 𝑓 , we will also broaden this notation so that
𝜁 (𝑔) indicates the total additive error over the support of 𝑓 . Explicitly,

𝜁 (𝑔) ≡
∑︁

𝑥∈𝑠𝑢𝑝𝑝 (𝑓 )
|𝑓 (𝑥) − 𝑔(𝑥) |.

While we define the error function 𝜁 using an absolute value for

intuition and compatibility with statistical distance, we note that

Algorithm 1 is constructed such that 𝑓 (𝑥) ≥ 𝑓𝑑 (𝑥)∀𝑥 ∈ 𝑠𝑢𝑝𝑝 (𝑓 ),
and both 𝑓 and 𝑓𝑑 are always non-negative. Accordingly, we can

‘drop’ the absolute value in many contexts. This is formalized in

Fact 1.

Fact 1. For arbitrary 𝑑 = 1𝐷𝐴(𝑓 , 𝑛) we have 0 ≤ 𝑓𝑑 (𝑥) < 𝑓 (𝑥)
for any 𝑥 ∈ 𝑠𝑢𝑝𝑝 (𝑓 ) since

𝑓𝑑 (𝑥) ≡
⌊𝑓 (𝑥) · 𝑛⌋

𝑛
≤ 𝑓 (𝑥)

and 𝑓 (𝑥) is always non-negative by the definition of a probability
mass function. Consequently, we can drop the absolute value when
considering approximations made using Algorithm 1. Thus we have

𝜁 (𝑓𝑑 ) =
∑︁

𝑥∈𝑠𝑢𝑝𝑝 (𝑓 )
𝑓 (𝑥) − 𝑓𝑑 (𝑥) .

We use the special element ⊥ to represent approximation error

in 𝑑 compared to the target distribution. Note that for some choices

of 𝑓 and 𝑛, not all ⊥ entries will be overwritten in the die returned

by Algorithm 1. For example, if 𝑓 is the pmf of a weighted coin with

𝑓 (“Heads”) = 0.55 and 𝑓 (“Tails”) = 0.45, then for 𝑑 = 1𝐷𝐴(𝑓 , 2),
we have that 𝑓𝑑 (“Heads”) = 0.5, 𝑓𝑑 (“Tails”) = 0, and 𝑓𝑑 (⊥) = 0.5.

Lemma 2 demonstrates the tight relationship between the number

of entries with label ⊥ and the approximation error function 𝜁 .

Lemma 2. Given 𝑑 = 1𝐷𝐴(𝑓 , 𝑛) for an arbitrary integer 𝑛 > 0

and an arbitrary probability mass function 𝑓 with finite support, the
probability mass that 𝑓𝑑 allocates to ⊥ is equal to the total additive
approximation error of 𝑓𝑑 . That is,

𝑓𝑑 (⊥) = 𝜁 (𝑓𝑑 ) .
Proof: By the construction of Algorithm 1, we know that 𝑛⊥, the

number of entries in 𝑑 with label ⊥, is precisely defined by

𝑛⊥ = 𝑛 −
∑︁

𝑥∈𝑠𝑢𝑝𝑝 (𝑓 )
freq𝑑 (𝑥)

where freq𝑑 (𝑥) gives the number of times that 𝑥 appears in the

array 𝑑 . Accordingly, we know that

𝑓𝑑 (⊥) =
𝑛⊥
𝑛

by Definition 1

=
𝑛 −∑

𝑥∈𝑠𝑢𝑝𝑝 (𝑓 ) freq𝑑 (𝑥)
𝑛

=
𝑛 −∑

𝑥∈𝑠𝑢𝑝𝑝 (𝑓 ) ⌊𝑓 (𝑥) · 𝑛⌋
𝑛

by Algorithm 1

= 1 −
∑︁

𝑥∈𝑠𝑢𝑝𝑝 (𝑓 )
𝑓𝑑 (𝑥) by Definition 1

=
∑︁

𝑥∈𝑠𝑢𝑝𝑝 (𝑓 )
𝑓 (𝑥) −

∑︁
𝑥∈𝑠𝑢𝑝𝑝 (𝑓 )

𝑓𝑑 (𝑥) by definition of pmf

= 𝜁 (𝑓𝑑 ) by Fact 1.

□

Error Bound for 1-Die Approximations. Nowwe are ready to prove

Lemma 3 which bounds the total additive error when using Algo-

rithm 1 to approximate an arbitrary discrete distribution with finite

support.

Lemma 3. Let 𝑓 be a probability mass function whose support has
at most 𝑛 elements. Fix some integer 𝑚 > 1. Let 𝑑 = 1𝐷𝐴(𝑓 ,𝑚𝑛).
Then we have

𝜁 (𝑓𝑑 ) <
1

𝑚
.

Proof: We have

𝜁 (𝑓𝑑 ) =
∑︁

𝑥∈𝑠𝑢𝑝𝑝 (𝑓 )
𝑓 (𝑥) − 𝑓𝑑 (𝑥) by Fact 1

=
∑︁

𝑥∈𝑠𝑢𝑝𝑝 (𝑓 )
𝑓 (𝑥) − ⌊𝑓 (𝑥) ·𝑚𝑛⌋

𝑚𝑛
by Alg 1

=
∑︁

𝑥∈𝑠𝑢𝑝𝑝 (𝑓 )

𝑓 (𝑥) ·𝑚𝑛 − ⌊𝑓 (𝑥) ·𝑚𝑛⌋
𝑚𝑛

<
∑︁

𝑥∈𝑠𝑢𝑝𝑝 (𝑓 )

1

𝑚𝑛
since ∀𝑥 ≥ 0 ∈ R, 𝑥 − ⌊𝑥⌋ < 1

≤ 1

𝑚

where the last step follows since |𝑠𝑢𝑝𝑝 (𝑓 ) | ≤ 𝑛 by our starting

assumption. □
Lemma 3 implies that if we use a big enough table, we can achieve

an approximation of any discrete, finite probability mass function

with arbitrarily small error. However, exploiting this bound directly

may require tables that are impractically large. We build on these

results in the next section.
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4.1.2 Approximating Distributions with Multiple Table Lookups
In this section we propose a method that composes several table

lookups to achieve higher precision with greatly reduced computa-

tional overhead. Similarly to the previous section, we begin with

a mathematical structure that precisely defines the usage of table

lookups in a sampling process (Definition 3).

Definition 3. A Dice Ensemble 𝐷 = (𝑉 , 𝐸) is a tree that en-
codes a discrete probability distribution with finite support. Each
vertex 𝑣 ∈ 𝑉 holds a die 𝑑𝑣 , which is an array whose entries are either
elements of a support set 𝑆𝑣 ∪ {⊥} (where ⊥ is a special element
used to represent error when approximating a target distribution with
support 𝑆), or a “placeholder” for another vertex 𝑢 ∈ 𝑉 . A directed
edge exists from 𝑣 to 𝑢 if and only if 𝑑𝑣 has a placeholder for 𝑢.

To sample from the probability distribution encoded by 𝐷 , we use
Algorithm 2. The probability mass function of this distribution can
be computed using Algorithm 3.

We note that while dice ensembles are defined as trees of dice,

we only use unary ‘trees’ (i.e. each node possessing at most one

child) in the present study. We leave this generality in the definition

as it may allow for improved approximations via more complex

decompositions of the target distribution than that of Algorithm 4.

We reserve this possibility for future work.

Algorithm 2 DE-Sample (Sampling from a Dice Ensemble)

Input: a die ensemble 𝐷 = (𝑉 , 𝐸) with root vertex 𝑟

Output: an element from the set {⊥} ∪⋃
𝑣∈𝑉 𝑆𝑣

1: 𝑋 ← the set of leaves in 𝑉

2: while 𝑋 ≠ {𝑟 } do
3: for all 𝑣 ∈ 𝑋 do
4: 𝑖

$← [𝑛𝑣] where 𝑛𝑣 is the number of entries in 𝑑𝑣
5: 𝑠 ← 𝑑𝑣 [𝑖]
6: for all incoming edge to 𝑣 , (𝑢, 𝑣) ∈ 𝐸 do
7: replace each placeholder 𝑣 on 𝑑𝑢 with 𝑠

8: remove (𝑢, 𝑣) from 𝐸

9: end for
10: remove 𝑣 from 𝑉

11: end for
12: 𝑋 ← the set of leaves in 𝑉

13: end while
14: 𝑖

$← [𝑛𝑟 ] where 𝑛𝑟 is the number of entries in the root die 𝑑𝑟
15: return 𝑑𝑟 [𝑖]

The sampling procedure Algorithm 2 rolls the dice at the leaves

of the tree, putting the results into the placeholder spaces in the

dice of parent nodes. The leaves are then removed. This repeats

until only the root is left. Finally, the root die is rolled, and its

output is the final result of the sampling algorithm. Algorithm 3

produces a probability mass function by leveraging the fact that

the probability of obtaining a given value from any leaf vertex 𝑣 is

well defined (as it is simply a die). Accordingly, the probability that

a placeholder for 𝑣 in a parent node takes a given value is also well

defined. Thus the iterative computation of probabilities from root

to leaf described in the algorithm suffices to find the probability

mass function of the distribution.

Algorithm 3 DE-pmf (Probability Mass Function of a Dice Ensem-

ble)

Input: a die ensemble 𝐷 = (𝑉 , 𝐸) with root vertex 𝑟

Output: a a dictionary representing a probability mass function 𝑔

supported on {⊥} ∪⋃
𝑣∈𝑉 𝑆𝑣

1: 𝑔← a dictionary with key set 𝑆 ∪ {⊥}, values all initialized to

0

2: 𝑤 ← a dictionary with key set 𝑉 , values all initialized to 0

3: 𝑤 [𝑟 ] ← 1

4: 𝑋 ← {𝑟 }
5: while 𝑋 ≠ ∅ do
6: 𝑋 ′ ← ∅
7: for all 𝑣 ∈ 𝑋 do
8: for all 𝑖 ∈ [0, |𝑑𝑣 |] do
9: 𝑠 ← 𝑑𝑣 [𝑖]
10: if 𝑠 ∈ 𝑆 ∪ {⊥} then
11: 𝑔[𝑠] ← 𝑔[𝑠] +𝑤 [𝑣] · 1

|𝑑𝑣 |
12: else
13: 𝑤 [𝑠] ← 𝑤 [𝑠] + 1

|𝑑𝑣 |
14: end if
15: 𝑋 ′ ← 𝑋 ′ ∪ {children of 𝑣}
16: end for
17: end for
18: 𝑋 ← 𝑋 ′

19: end while
20: return 𝑔

In Algorithm 4, we compose table lookups to approximate a

distribution with increasing precision. For intuition, recall that in

Algorithm 1, 𝑓 (𝑥) ≥ 𝑓𝑑 (𝑥)∀𝑥 ∈ 𝑠𝑢𝑝𝑝 (𝑓 ), and by Lemma 2, all of

the probability mass comprising the difference between 𝑓 and 𝑓𝑑 is

contained in entries of 𝑑 that are labeled with the error symbol ⊥.
However, by construction of Algorithm 1, the gap between 𝑓 (𝑥)
and 𝑓𝑑 (𝑥) is smaller than

1

𝑇
for all 𝑥 ∈ 𝑠𝑢𝑝𝑝 (𝑓 ), which means

that allocating an additional face of 𝑑 to any 𝑥 ∈ 𝑠𝑢𝑝𝑝 (𝑓 ) would
cause 𝑓𝑑 (𝑥) > 𝑓 (𝑥), and there would be no guarantee that the

approximation error would decrease. However, if we divided up

the mass from 𝑓𝑑 (⊥) into pieces smaller than
1

𝑇
, we could allocate

it more productively to achieve a finer approximation. This will be

our strategy in Algorithm 4.

Specifically, we obtain finer and finer approximations of the tar-

get distribution by constructing a 1-die approximation of the error

distribution 𝑑𝑖+1, and assigning entries of 𝑑𝑖 labeled with ⊥ to take

its outputs. Functionally, if we take 𝑓𝐷𝑖
to be the probability mass

function of the dice ensemble in the 𝑖𝑡ℎ iteration of Algorithm 4, this

splits the approximation error 𝑓𝐷𝑖
(⊥) into pieces of size

𝑓𝐷𝑖
(⊥)

𝑇 𝑖+1 ,

and allocates them to fill the gaps between the target pmf and

the approximation. This brings 𝑓𝐷𝑖+1 closer to 𝑓 . This intuition is

formalized in the proof of Theorem 2, our key theoretical result.

Theorem 2. Let 𝑓 be the probability mass function of an arbitrary
discrete distribution with finite support. Let 𝐷 = 𝐷𝐸𝐴(𝑓 , ℓ) be a dice
ensemble obtained from Algorithm 4, and 𝑓𝐷 be the probability mass
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Algorithm 4 DEA (Dice Ensemble Approximation of a Distribu-

tion)

Input: A probability mass function 𝑓 : R ↦→ [0, 1] corresponding
to a finite discrete probability distribution with

|𝑠𝑢𝑝𝑝 (𝑓 ) | = 𝑛; a maximum number of dice ℓ

Output: a dice ensemble 𝐷 that approximates 𝑓

1: initialize 𝐷 = (𝑉 , 𝐸) with 𝑉 , 𝐸 empty sets

2: 𝐸𝑟𝑟 ← a dictionary whose keys are 𝑥 ∈ 𝑠𝑢𝑝𝑝 (𝑓 ), values initial-
ized to 𝑓 (𝑥)

3: 𝑐 ← 1 {tracks error mass}

4: for all 𝑖 ∈ [1, ℓ] do
5: 𝑑𝑖 ← 1DA(𝐸𝑟𝑟 , 2𝑛)

6: for all 𝑥 ∈ 𝑠𝑢𝑝𝑝 (𝑓 ) do
7: 𝐸𝑟𝑟 [𝑥] ← 𝐸𝑟𝑟 [𝑥] − freq𝑑𝑖 (𝑥 )

2𝑛 · 𝑐
8: end for
9: 𝑐 ← 𝑐 · freq𝑑𝑖 (⊥)

2𝑛

10: 𝐸𝑟𝑟 [𝑥] ← 𝐸𝑟𝑟 [𝑥 ]∑
𝑥 ∈𝑠𝑢𝑝𝑝 (𝑓 ) 𝐸𝑟𝑟 [𝑥 ]

∀𝑥 ∈ 𝑠𝑢𝑝𝑝 (𝑓 ) {re-normalize

the error}

11: 𝑣𝑖 ← vertex with 𝑑𝑖 as its die

12: 𝑉 ← 𝑉 ∪ {𝑣𝑖 }
13: if 𝑖 ≠ 1 then
14: 𝐸 ← 𝐸 ∪ {(𝑣𝑖 , 𝑣𝑖−1)}
15: end if
16: if 𝑓𝑑𝑖 (⊥) = 0 then
17: break

18: end if
19: if 𝑖 < ℓ then
20: set all remaining entries of 𝑑𝑖 with ⊥ to 𝑣𝑖+1 instead

21: end if
22: end for
23: return 𝐷 = (𝑉 , 𝐸)

function of the corresponding distribution. Then we have∑︁
𝑥∈𝑠𝑢𝑝𝑝 (𝑓 )

|𝑓 (𝑥) − 𝑓𝐷 (𝑥) | < 2
−ℓ .

The proof is deferred to Appendix A.1. Theorem 2 shows that if

we use enough tables, we can achieve an arbitrarily fine approxima-

tion of any discrete distribution with finite support. Furthermore,

the error between the approximated distribution and the target

distribution given as input declines exponentially with the num-

ber of tables. It follows as a corollary that they are statistically

indistinguishable when parameterized properly.

4.1.3 Statistical Closeness to Input Distributions In this section, we

show that our constructed distributions are statistically indistin-

guishable from the target distributions they mimic. We then use a

hybrid argument to extend this result, showing that any probabilis-

tic algorithm which samples from an arbitrary discrete distribution

𝑋 is statistically indistinguishable from an algorithm which uses

our constructed distribution 𝑌 as a drop-in replacement.

Corollary 1 (Statistical Indistinguishability of Target

Distribution and Table Approximation.). Consider an arbitrary
discrete, finite random variable 𝑋 with probability mass function 𝑓 .
Let 𝑌 = (𝑌𝜆)𝜆∈N be a sequence of random variables parameterized

by a statistical security parameter 𝜆, such that the probability mass
function of 𝑌 (1𝜆) is given by 𝑓𝐷𝜆

where 𝐷𝜆 = 𝐷𝐸𝐴(𝑓 , 𝜆). Then 𝑌 is
statistically indistinguishable from 𝑋 .

Proof: As an immediate consequence of Theorem 2 we have∑
𝑥∈𝑠𝑢𝑝𝑝 (𝑓 ) |𝑓 (𝑥) − 𝑓 ′ (𝑥) | ≤ 2

−𝜆
. There is only one element in

𝑠𝑢𝑝𝑝 (𝑓 ′) that is not in 𝑠𝑢𝑝𝑝 (𝑓 ), and that’s ⊥. So we have

𝑆𝐷𝑋,𝑌 (𝜆) =
1

2

·
∑︁

𝑧∈{0,1}∗

���Pr [𝑋 = 𝑧] − Pr

[
𝑌 (1𝜆) = 𝑧

] ���
(by def of Statistical Distance)

=
1

2

· ©­«𝑓𝐷𝜆
(⊥) +

∑︁
𝑥∈𝑠𝑢𝑝𝑝 (𝑓 )

|𝑓 (𝑥) − 𝑓𝐷𝜆
(𝑥) |ª®¬

=
1

2

· 2 ·
∑︁

𝑥∈𝑠𝑢𝑝𝑝 (𝑓 )
|𝑓 (𝑥) − 𝑓𝐷𝜆

(𝑥) | by Lemma 2

≤ 2
−𝜆

by Theorem 2.

Thus the statistical distance between 𝑋 and 𝑌 is bounded by a

negligible function of 𝜆. □
Corollary 1 shows that we can approximate any discrete distribu-

tion with finite support finely enough to be indistinguishable using

relatively few tables. To complement this result, we will define

a truncation scheme which enables us to construct a statistically

indistinguishable finitized version of any discrete distribution with

a defined probability mass function in Algorithm 5.

Algorithm 5 Trunc (Statistically Close Truncation)

Input: 𝑓 , the pmf of a discrete probability distribution; statistical

security parameter 𝜆

Output: 𝑓 ′, a statistically close finitized pmf

1: 𝑠𝑢𝑝𝑝 (𝑓 ′) ← ∅
2: Let (𝑥0, 𝑥1, 𝑥2, ...) be a sequence of values in 𝑠𝑢𝑝𝑝 (𝑓 ) such that

𝑓 (𝑥𝑖 ) ≥ 𝑓 (𝑥𝑖+1)∀𝑖 ∈ N.

3: 𝑖 ← 0

4: while 1

2
·
(
1 −∑

𝑥∈𝑠𝑢𝑝𝑝 (𝑓 ′ ) 𝑓
′ (𝑥)

)
< 2
−𝜆 do

5: 𝑠𝑢𝑝𝑝 (𝑓 ′) ← 𝑠𝑢𝑝𝑝 (𝑓 ′) ∪ {𝑥𝑖 }
6: 𝑓 ′ (𝑥𝑖 ) ← 𝑓 (𝑥𝑖 )
7: 𝑖 ← 𝑖 + 1

8: end while
9: return 𝑓 ′

Algorithm 5 straightforwardly defines a truncated probability

mass function 𝑓 ′ by copying over elements from 𝑓 in descending

order until the statistical distance between the two is underneath

a threshold defined by an exponential function of 𝜆. This trivially

results in 𝑓 ′ which is statistically indistinguishable from 𝑓 .

With Corollary 1 and Algorithm 5 together, we are ready to prove

statistical indistinguishability between the outputs of a probabilistic

algorithm which uses constantly-many samples from an arbitrary

discrete distribution𝑋 (possibly with infinite support), and the same

algorithm which samples from the MPC-efficient approximation

given by 𝐷𝐸𝐴(Trunc(𝑓 , 𝜆), 𝜆) as a drop-in replacement.

Theorem 3. Consider an oracle 𝑂 which outputs samples from
a discrete distribution 𝑋 . Consider also a probabilistic algorithm A
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which takes a database as input, makes a constant number 𝑡 ∈ N of
calls to 𝑂 , and outputs a real number. Let 𝑂 ′ be an oracle which out-
puts samples from the distribution defined by 𝐷𝐸𝐴(Trunc(𝑓 , 𝜆), 𝜆),
where 𝑓 is the probability mass function of 𝑋 . LetA′ be a probabilis-
tic algorithm that is exactly the same as A, except the oracle calls to
𝑂 are replaced by calls to 𝑂 ′.

Then the output distributions of A and A′ are statistically indis-
tinguishable.

Proof: We proceed via a standard hybrid argument. Consider a

sequence of hybrids 𝐻0, 𝐻1, ..., 𝐻𝑡 , 𝐻𝑡+1, ..., 𝐻2𝑡
, where 𝐻0

is the

distribution defined by the original mechanism𝑀 , and each hybrid

up to𝐻𝑡
replaces a single call to𝑂 with a call to an oracle𝑂 ′′ which

samples from Trunc(𝑓 , 𝜆), so that 𝐻𝑡
is the same as𝑀 except that

all calls to𝑂 are replaced with calls to𝑂 ′′. Further, let𝐻𝑡+1
through

𝐻2𝑡
each replace a call of 𝑂 ′′ with a call to 𝑂 ′, so that 𝐻2𝑡

is the

distribution defined by the mechanism𝑀′.
By the construction of Algorithm 5, each adjacent pair of hybrids

𝐻 𝑖
and 𝐻 𝑖+1

for 𝑖 ∈ [0, 𝑡] are statistically indistinguishable, and by

Corollary 1 this also holds for 𝑖 ∈ [𝑡, 2𝑡]. Further, the number of

hybrids is a constant with reference to the security parameter 𝜆.

Thus the sum of their statistical distances is a negligible function of

𝜆, and accordingly 𝐻0
is statistically indistinguishable from 𝐻2𝑡

. □

Relationship to Differential Privacy Of particular interest to our

desired use case, Theorem 3 implies that the chance that an adver-

sary can distinguish between a differentially private mechanism

which uses our approximated distribution, and one that uses the

original target distribution, is a negligible function of 𝜆. Accordingly,

as long as 𝜆 is set high enough the two mechanisms should be essen-

tially interchangeable in practice. We note also that differentially

private mechanisms are often subjected to similar perturbations

when translating theory to practice. Implementations on finite com-

puters are incapable of drawing frommany theoretical distributions

used routinely in differential privacy. Instead, they implicitly draw

from statistically close finitized approximations.

This means that we can utilize our MPC-friendly distributions to

achieve improved efficiency in differentially private collaborative

learning applications. In the following sectionwe detail our protocol

for sampling from these distributions within MPC.

4.2 MPC Protocol for Sampling
We realize the large table lookups by first generating encryptions

of one-hot vectors and computing a dot product of the table and the

private one-hot vector. We first show how to generate the one-hot

vectors in the FABB-hybrid model (Figure 2). Then, we describe the

protocol to sample from a distribution using a chained table lookup.

The main idea behind generating one-hot vectors with mini-

mal communication is to use the boolean to bitwise encryption

functionality from Figure 2 to obtain the bitwise encryptions of

a random value 𝑟 ← [2ℓ ]. Then, locally compute the encrypted

one-hot vector such that it is zero in all places other than 𝑟 . For

instance if we have a 2 − 𝑏𝑖𝑡 vector and the random bits sampled

are 𝑏0 = 0 and 𝑏1 = 1, then the one-hot vector can be generated as

[ ¯𝑏0
¯𝑏1, 𝑏0

¯𝑏1, ¯𝑏0𝑏1, 𝑏0𝑏1] = [0010]. Figure 3, describes the protocol in
detail. Using the efficient one-hot vector generation protocol from

Figure 3, it is easy to see how we can instantiate a chained table

lookup. At each level, we have a table that uses the output from

Functionality FABB
This functionality operates over a finite field Z𝑝 (resp., F2) for arith-

metic secret-shared values (resp., Boolean secret-shared values), and

interacts with parties 𝑃1, . . . , 𝑃𝑛 .

Random: Upon receiving (Random, type, id) from all parties where

type ∈ {arith, bool} and id is a fresh identifier, sample 𝑟 ← Z𝑝 or

𝑟 ← {0, 1} relying on type, store (id, type, 𝑟 ) .
Boolean to Bitwise Encryption: Upon receiving

(B2E, id, 𝑐0, 𝑐1, . . . , 𝑐𝑙 ) from all parties, where (id[𝑖 ] [ 𝑗 ] ) for

𝑖 ∈ [0, 𝑀 ] and 𝑗 ∈ [0, ℓ ] are present in memory, retrieve

(id[𝑖 ], bool, x[𝑖 ] ) for all 𝑖 ∈ [0, 𝑀 ] and store (𝑐0, 𝑐1, . . . , 𝑐𝑙 ) where
𝑐 𝑗 = [[x[0 . . . 𝑀 ] [ 𝑗 ] ]] for 𝑗 ∈ [0, ℓ ].
Encryption to Arithmetic shares: Upon receiving (E2A, id, id′ )
from all parties where (id, enc) is present in memory, retrieve

(id, enc, 𝑥 ) and store (id′, arith, 𝑥 ) .
Output: Upon receiving (Output, 𝑃𝑖 , type, id) from all parties, where

(id, type) is present in memory, retrieve (id, type, 𝑥 ) and then output

it to 𝑃𝑖 .

Figure 2: Functionality for the MPC black box.

Protocol Πone-hot

Input: Parties 𝑃1, . . . , 𝑃𝑛 hold the following inputs:

• The set of public parameters 𝑝𝑝 for public-key BGV-THE.

• 𝑃𝑖 holds a share of the secret key sk𝑖 = 𝑠𝑖 and the public key 𝑝𝑘 ,

𝑀 is the packing size.

• Size of the output vector 2
ℓ
.

Generation of𝑀 encrypted one-hot vectors:
(1) All parties call the (Random) command of FABB to sample a

vector of Boolean sharings ⟨𝑅⟩𝑏 with 𝑅 ∈ {0, 1} ℓ∗𝑀 .

(2) All parties call the (B2E, ⟨𝑅⟩𝑏 ) of the functionality FABB
to obtain bit-wise ciphertexts 𝑐0 = [[𝑅 [0 . . . 𝑀 ] [0] ]], 𝑐1 =

[[𝑅 [0 . . . 𝑀 ] [1] ]], . . . , 𝑐𝑙−1
= [[𝑅 [0 . . . 𝑀 ] [ℓ − 1] ]], such that

each encryption packs𝑀 values.

(3) All parties compute 𝑐𝑖 = [[1]] − 𝑐𝑖 , for all 𝑖 ∈ [0, 𝑙 − 1], where
[[1]] is encryption of a vector of size𝑀 with all 1 values.

(4) Each party 𝑃𝑖 sets starti = 2ℓ−log(n)+1 ∗ (i − 1) and endi =

2ℓ−log(n)+1 ∗ i.
(5) Each party 𝑃𝑖 computes [[Prod[j] ]] =∏

k∈ [0,l−1]

{
𝑐𝑘 if 𝑗 [𝑘 ] = 1

𝑐𝑘 otherwise

for all 𝑗 ∈ [starti, endi ].

Output: Each party 𝑃𝑖 outputs 𝑐 𝑗 = [[Prod[j] ]] for all 𝑗 ∈
[starti, endi ].

Figure 3: Protocol to obtain encrypted one-hot vector.

the previous level in some places. Since the parties have encryption

shares of the private value, they first aggregate this to get the en-

cryption of the result of sampling from the current table and they

can use this ciphertext to locally compute the shares of the next

dot-product as described in Figure 4.

Implementation optimizations. The naive generation of the one-

hot vector requires 𝑂 (ℓ ∗ 2
ℓ ) ciphertext-ciphertext multiplications.

A simple way to reduce the computation per party is to divide

the computation of the one-hot vector among all parties. Thus,
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each party 𝑃𝑖 computes only 2
ℓ−log(𝑛)

values in the one-hot vector

between 𝑠𝑖 = 2
ℓ−log𝑛+1 (𝑖 − 1) and 𝑒𝑖 = 2

ℓ−log𝑛+1𝑖 . In Πnoise, we

use the same 𝑠𝑖 and 𝑒𝑖 for 𝑃𝑖 as Πone−hot.
Further, several intermediate products can be reused; thus, to

minimize the computation overhead, each party follows the steps

below:

(1) Compute the common product value to be used for all the

indices among [𝑠𝑖 , 𝑒𝑖 ), i.e., set common places 𝑥 = 𝑠𝑖⊕𝑒𝑖⊕(2ℓ−1).
For all ones in 𝑥 ,

𝑐𝑐𝑜𝑚𝑚𝑜𝑛 =
∏

𝑘∈[0,𝑙−1]


1 if 𝑥 [𝑘] ≠ 1

𝑐𝑘 if 𝑠𝑖 [𝑘] = 1 and 𝑥 [𝑘] = 1

𝑐𝑘 otherwise

This product can be computed as a reduction.

(2) Each party starts with a two-dimensional array of ciphertexts

denoted by𝑉 , where initially each column𝑉 [𝑖] has two cipher-
texts 𝑐𝑘 , 𝑐𝑘 where 𝑥 [𝑘] = 0. If available, we multiply the first

column with 𝑐𝑐𝑜𝑚𝑚𝑜𝑛 .

(3) Now similar to reduction, each party computes the tensor prod-

uct of all the columns in 𝑉 until only two columns remain in

𝑉 . Note that we can go up to a single column; however, it re-

quires the parties to store a much larger number of ciphertexts

without any computational saving.

(4) In steps 1c and 1d in Πnoise (Figure 4), the parties compute the

corresponding ciphertext using 𝑉 .

The above steps help reduce the depth of ciphertext-ciphertext

multiplications, thus reducing the noise increase in the resulting

ciphertext.

Implementation details. We implemented our secure noise sam-

pling protocol using the 𝐹𝑢𝑛𝑐 [𝐴𝐵𝐵] (Figure 2) implementation

from [19] which uses EMP-toolkit [34] and OpenFHE [2] as MPC

and FHE frameworks respectively. The key-setup process is iden-

tical to [19] where parties generate their local secret keys and

exchange the corresponding public keys, which are aggregated to

be the final global public key. This cost has been included in the

evaluation.

Proof of security. The security of Πone−hot is intuitive because
the parties do not communicate with each other in the FABB-hybrid
model. Similarly, in Πnoise, parties only send the encryption shares

of the dot product, which are indistinguishable from the encryption

of random values given the security of the THE scheme.

Proof of correctness. We give a brief intuition of the correctness

proof here. First, given FABB steps 1- 3, lead to all parties obtaining

the encryption of uniformly random ℓ𝑀 bits and the negation of

these bits. Step 5 computes the encryption of the one-hot vector

values by computing the product of the ciphertexts corresponding

to the bit decomposition of each index. The underlying message

is 1 iff the random bits equal that of the index. Thus, the Πone-hot
results with each party 𝑃𝑖 obtaining encryptions of random one-hot

vector values for indices between 𝑠𝑖 , 𝑒𝑖 .

The protocol Πnoise involves obtaining the encrypted one-hot

vector usingΠone−hot and then assuming a single table, we compute

a dot product with the original table, thus given the randomness

of the one-hot vector, the samples are drawn from random indices.

For chained table-lookup, in steps 1c, we use the result from the

Protocol Πnoise

Inputs: Parties 𝑃1, . . . , 𝑃𝑛 hold the following inputs:

• The set of public parameters 𝑝𝑝 for public-key BGV-THE.

• 𝑃𝑖 holds a share of the secret key sk𝑖 = 𝑠𝑖 and the public key 𝑝𝑘 ,

𝑀 is the packing size.

• All parties hold tables𝑇0, . . . ,𝑇𝜆−1
of length 2

ℓ
.𝑇𝑖 for 𝑖 ∈ [1, 𝜆 − 1]

has public entries up to index 𝑥𝑖 and𝑇𝑖 [ 𝑗 ] = ⊥ for all 𝑗 ∈ [𝑥𝑖 , 2ℓ −
1]. 𝑥0 := 2

ℓ
.

Generation of random samples:
(1) For 𝑖 ∈ [𝜆] all parties follow the steps below:

(a) All parties use Πone−hot to obtain the encryption of 𝑁 one-

hot vectors of length 2
ℓ
, such that 𝑃 𝑗 obtains 𝑐𝑠 𝑗 , . . . 𝑐𝑒 𝑗 .

(b) Each party 𝑃 𝑗 computes 𝑐
𝑗
𝑝 = Σ

𝑘=𝑒 𝑗

𝑘=max(𝑠 𝑗 ,𝑥𝑖 )
𝑐𝑘

(c) Each party 𝑃 𝑗 computes [[𝑦 𝑗

𝑖
]] = Σ

𝑘=min𝑥𝑖 ,𝑒 𝑗

𝑘=𝑠 𝑗
𝑐 𝑗𝑇𝑖 [ 𝑗 ] +

𝑐
𝑗
𝑝 [[𝑦𝑖+1 ]].

(d) All parties send [[𝑦 𝑗

𝑖
]] to 𝑃1. 𝑃1 computes [[𝑦𝑖 ]] =

Σ𝑗=𝑛

𝑗=1
[[𝑦 𝑗

𝑖
]] and sends it to all other parties.

(2) All parties call (E2A, [[𝑦0 ]] ) of the functionality FABB obtain

⟨𝒚 ⟩𝑎 .

Output: Each party outputs additive shares of 𝑀 random noise

samples ⟨𝒚 ⟩𝑎 .

Figure 4: Protocol for distributed noise sampling.
previous iteration for the empty ⊥ values. Note that if the number

of tables is high, we must bootstrap the ciphertext to ensure cor-

rectness. In step 1d, parties obtain the encryption of the random

samples. In step 2, parties obtain the additive shares of the random

noise sample using encryption to shares functionality from FABB.

4.3 Application of discrete Gaussian generation:
DP-CL

The proposed noise sampling in MPC method can be integrated

with FL to achieve DP guarantees under an honest-but-curious threat
model. The clients follow the protocol to compute local gradient

updates and the server party will use secure MPC to aggregate all

updates shared by the client parties. The appropriate amount of

noise is sampled and added inside the secure MPC protocol. This

noise is unknown to both the clients and the server. Hence there

is no need to trust the clients or the server or add additional noise

due to potentially colluding clients. In this work, we primarily

consider applications like hospital collaboration where data point-

level privacy shall be protected
1
.

Our proposed framework is built upon two prior works [15] (with

data point-level DP) and [23] (with client-level DP), which both use

distributed DP. As shown in Algorithm 6 and Algorithm 7, in this

work, we replace the distributed noise with central noise sampled

inside the secure MPC protocol. We follow the same sampling

and training process as in [15] to achieve data-point level privacy

protection: we assume there are 𝑁 clients and the size of their local

dataset𝐷𝑖 is public. They all agree on the set of hyperparameters for

model training as well as privacy budget 𝜖 before the training starts.

For each communication round, all client parties are sampled to

1
The proposed noise sampling protocol can also be used for client-level privacy pro-

tection, which is demonstrated in Appendix D.
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train and share a model update. All clients use the same mini-batch

subsampling rate to draw data points for training their local model

updates and each client computes, clips, and discretizes point-wise

gradient updates. The model updates are aggregated after each local

training step. In addition, we follow the conditional randomized
rounding, flattening, and modular clipping steps, in [23] to

discretize the clients’ model updates before secure MPC protocol,

as defined in Appendix C. In addition, following the proofs in [23],

we provide a similar utility and privacy analysis for our DP-CL

method in Appendix C. A more detailed version of the algorithms

is provided in Appendix B.

By Theorem 1, one single communication round of Algorithm 6

and Algorithm 7 satisfy
1

2
𝜖2
-concentrated DP, with

Δ2

2
= min


𝑐2 + 1

4
𝛾2𝑑 +

√︁
2 log(1/𝛽) · 𝛾 ·

(
𝑐 + 1

2
𝛾
√
𝑑

)
,(

𝑐 + 𝛾
√
𝑑

)
2

 ,

with 𝜖 = Δ
𝜎 when sampling probability 𝑝 = 1.0. We follow the same

privacy accounting methods [3, 13, 30, 36] (to handle subsampling

and composition) used in [23] for consistency.

Algorithm 6 Client Training Procedure

Input:
• the current model state𝑊

• the loss function 𝐿

• the clipping norm, 𝑐

• the noise multiplier, 𝜎

• the discretization granularity, 𝛾

• the bias 𝛽

• the mini-batch sampling rate, 𝑝

• the private training data 𝐷𝑖 for client 𝑖 ,

• 𝑚 for modulus operation

• Public uniformly random sign vector 𝜉 ∈ {−1, +1}𝑑

1: Sample mini-batch 𝐵𝑖 ∈ 𝐷𝑖 with sampling probability 𝑝 .

2: for all 𝑥𝑏 ∈ 𝐵𝑖 do
3: 𝑔𝑏 ← ∇𝑊 𝐿(𝑊,𝑥𝑏 ) {compute example-wise gradient}

4: 𝑔𝑏
′ ← 1

𝛾
(𝑔𝑏 · min{1, 𝐶

| |𝑔𝑏 | |2
}) {clip and scale the gradient}

5: 𝑔𝑏
′′ ← flatten(𝑔𝑏 ′, 𝜉 )

6: 𝑔𝑏 = randomized round(𝑔𝑏 ′′ ) {condition on | |𝑔𝑏 | |2 ≤ min

{
𝑐
𝛾
+

√
𝑑,

√︂
𝑐2

𝛾2
+ 1

4
𝑑 +

√︃
2 log

1

𝛽
· ( 𝑐

𝛾
+ 1

2

√
𝑑 )

}
}

7: end for
8: Δ𝑊𝑖 =

∑
𝑏 𝑔𝑏

9: output Δ𝑊𝑖 mod𝑚 for secure MPC

5 Empirical Evaluation

5.1 Summary of Evaluation
Below we summarize the key findings from our evaluation:

• Our protocol achieves massive run time improvement when

compared to prior state-of-the-art, namely, 450× for 32 parties.

• For communication cost, we require significantly less communi-

cation compared to the prior work, namely, 13× for 32 parties.

Algorithm 7 Server Training Procedure

Input:
• the previous model state𝑊𝑡−1

• the noise multiplier, 𝜎

• the discretization granularity, 𝛾

• 𝑚 for modulus operation

• the client dataset sizes | |𝐷𝑖 | | (assumed to be public).

• Public uniformly random sign vector 𝜉 ∈ {−1, +1}𝑑
• the models updates Δ𝑊 = ((∑𝑖 Δ𝑊

′
𝑖
mod𝑚) + (NZ (0, 𝜎2/𝛾2)

mod𝑚)) mod𝑚 via secure MPC {this is equivalent to aggregating all

scaled, flattened, and rounded gradient vectors: =

(∑𝐵
𝑏
𝑔𝑏 + (NZ (0, 𝜎2/𝛾2 ) )

)
mod𝑚}

1: Map Δ𝑊 to Δ𝑊
′ ∈ [−𝑚/2,𝑚/2]𝑑 ∩ Z𝑑

{make Δ𝑊
′
mod𝑚 = Δ𝑊 }

2: Δ𝑊 = 𝛾 · unflatten(Δ𝑊 ′, 𝜉)
3: 𝐵 = 𝑝 ·∑𝑁

𝑖 | |𝐷𝑖 | | {Calculate the overall mini-batch size }

4: output𝑊𝑡 =𝑊𝑡−1+ optimizer(Δ𝑊 /𝐵)

• The running time of our protocol is largely independent of the

table size and statistical security parameter dominates the cost

the protocol.

• The DP-CL algorithm that samples and adds noise via an MPC

protocol achieves better model performance than algorithms that

use distributed DP and need to add extra noise to account for

colluding clients.

5.2 Evaluation Setup
Secure sampling experiments setup. All experiments are conducted

on AWS of instance type m5.2xlarge. We benchmark our protocol

for up to 32 parties to show the scalability of our protocol, and to

support future applications which may require generating DP noise

over larger numbers of parties. We consider the following network

settings:

• LAN: Bandwidth of up to 1 Gbps and a latency of 0.1 ms.

• WAN: Bandwidth of up to 1 Gbps and a latency of 100 ms.

We compare our work with the prior state-of-the-art work by Wei

et al. [38] for semi-honest security and up to 𝑛 − 1 corruptions.

For comparison, we benchmark their protocol
2
using the GMW

protocol from MP-SPDZ for semi-honest security. Specifically, we

use OT-based semi2k and HE-based temi protocols from MPSPDZ

to benchmark the prior work. All our experiments use bit-length

equals 32 and statistical security parameter 𝜆 = 64 unless stated

otherwise.

DP-CL experiments setup. To evaluate model utility, we simulate

our DP-CL method for training soft prompts and the classifier lay-

ers of RoBERTa-base models [26] using standard natural language

processing datasets SST2 [32], QQP [37], MNLI [39], and QNLI [33]

from the GLUE benchmark [33] following prior works on DP fine-

tuning of language models [7]. For all experiments, we simulate the

distributed setting by splitting the dataset equally into 10 clients.

Since we primarily aim for applications like hospital collaborations,

the number of clients is not too big and is comparable to the num-

bers used in prior work [15]. Data point-level DP is considered

and the 𝛿 value for DP is set to be 1/| |𝐷train | |, where | |𝐷train | | is
2
https://github.com/yuchengxj/Secure-sampling-benchmark
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Figure 5: Comparison for different number of parties. Perfor-
mance comparison for different number of parties with table size

2
16

and statistical security parameter 64 in the LAN setting.
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Figure 6: Comparison for different table sizes. Performance

comparison for different table sizes for 8 parties with 64 statistical

security parameter in the LAN setting.

the size of aggregated training data (summation of all clients’ lo-

cal data). The code is implemented in PyTorch. We followed the

implementations of prior work [23] to discretize model gradients,

simulate discrete Gaussian noise, and perform DP analysis. More

details about the hyperparameters for training and discretization

are described in Table 4 and Appendix E. All DP-CL experiments

are conducted on NVIDIA A100 GPUs.

5.3 Efficiency of DP Noise Sampling
Scalability with number of parties. Figure 5 describes detailed

performance of our protocol for increasing number of parties with

statistical security parameter 64. We observe that the time decreases

linearly up to 8 parties but increases for larger number of parties.

This is because the runtime can be broken into two parts: (A) inter-

active part (computing encrypted bits from random boolean shares

and additive shares of the output from its ciphertext), and (B) local

computation (one-hot vector generation and output value encryp-

tion) (see Section 4.2). The local computation is parallelized across

all parties, thus decreasing the runtime as the number of parties

increases. At greater than 8 parties, the interactive part begins to

dominate the runtime, resulting in the trend observed in Figure 5.

Scalability with size of table. Figure 6 shows the performance

using 64 tables/statistical security parameters and 8 parties. We

note that communication is almost constant for any table size; this

is because only the initial step of converting random indices to

their bitwise encryption depends on the log of table size, and it is

Table 2: Performance for varying statistical security parame-
ter (𝜆). These benchmarks are for 16 parties when using tables of

size 2
16

in the LAN setting.

𝜆 Time (ms) Communication (MB)

40 40.53 7.21

64 64.42 11.18

128 128.09 22.22
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Figure 7: Required table size vs standard deviation for the
discrete Gaussian distribution.
much smaller than the number of tables. As a result, communication

largely remains independent of table size. Additionally, we note that

computation time remains nearly constant with increasing table

size. This is because most of the computation that depends on table

size can be parallelized. Thus, the statistical security parameter

becomes the dominant factor influencing performance.

Scalability with statistical security parameter. We benchmark

the performance of our protocol for varying statistical security

parameter with 16 parties and table size 2
16

in Table 2. As noted

earlier the computation dependent on 𝜆 is not parallelized, thus

we observe that the performance depends linearly on 𝜆. These

experiments show that our method maintains efficiency even at

minuscule levels of statistical distance from the target distribution.

Further, Figure 7 illustrates how table size varies with the standard

deviation 𝜎 for the discrete Gaussian distribution. We observe that

for our CL benchmarks the table sizes are within the range of 2
12

to 2
16
, thus justifying our benchmark table sizes.

Comparison with prior work. We show a detailed comparison of

our work with the prior state of the art for different numbers of

parties in Table 1. As shown in the table our protocol achieves sig-

nificant improvement both in terms of the execution time and total

communication required. For instance, when using 16 parties, our

protocol is up to 213× faster and requires 2.8× less communication

than prior work with HE-based protocol in the LAN setting. Note

that we use the worst-case communication; as in the chained table

lookup, the intermediate results are only used by a few parties;

however, in our benchmarks, we send the intermediate results to

all parties to keep the result independent of the underlying distri-

bution. We extrapolate the cost of the prior work for the WAN

setting based on the linear dependence of time vs latency as shown

in Figure ??. Note that we use the implementation
3
for the prior

work without any changes.

3
https://github.com/yuchengxj/Secure-sampling-benchmark
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5.4 Model Utility Evaluation

CL with data point-level privacy guarantee by addition of central-
ized noise sampled in secure MPC. As a baseline, we first evaluate
DP-CL without any discretization; the additive noise is continuous

Gaussian sampled at the server side. We evaluate our method which

discretizes the clients’ gradient updates and adds the centralized

discrete Gaussian noise as if it is sampled from a secure MPC proto-

col. We additionally show two DP-CL scenarios where distributed

noise is added by the clients but with half of the clients or all but

one client colluding. In our setup with 10 clients in total, those are

equivalent to 5 and 9 colluding clients respectively. In those two

cases, each client samples noises as if only (10 − num_colluding)
client(s) will contribute to the additive noise. That means, the to-

tal amount of noise added will be more than the amount of noise

added in the centralized case, which may degrade the model perfor-

mance more. The results evaluated on the SST2 dataset is plotted

in Figure 8. We execute five runs for each experiment and include

the 95% confidence interval and the mean ± standard deviation

(Table ??). With half of the clients colluding, the final evaluation

accuracy value is close to that of ours, but it converges more slowly

than ours. When 9 clients collude, the training converges signifi-

cantly more slowly and the final evaluation accuracy is much lower

than ours. A similar trend is observed for experiments on MNLI

datasets (see Figure 12 in Appendix F.2). For QQP and QNLI datasets,

the proposed method slightly outperforms the baseline, as shown

in Figures 11 and ??. This is likely because our method requires

additional discretization steps, which should slightly degrade the

model’s performance; however, our method also uses discrete noise,

which provides comparable or slightly better accuracy, as noted

in [4]. Depending on the relative contributions of these factors,

and the stochasticity of model training, our method may perform

slightly better or worse than the baseline.

Overall, ours performs similarly to the baseline (the mean values

are similar and the confidence intervals overlap). On average, the

method with 5 or 9 colluding parties performs worse than the base-

line or our method. This shows that by integrating DP collaborative

ML training frameworks into secure MPC protocols, there is little

degradation compared to cases without secure MPC protocols. By

sampling noises in the secure MPC protocol, our method avoids

adding additional noises to account for colluding clients, which

yields better model performance.

We summarize the utility evaluation and contextualize it with

the overhead of MPC noise sampling in Table 3. Our method pro-

vides protection against all-but-one corruption, which is equivalent

to the 9 colluding setting for the distributed DP experiments. MPC

sampling allows us to add less total noise to provide this level of

protection. As a result, our method obtains large to moderate accu-

racy gains over distributed DP with protection against 9 colluding

parties (we improve mean accuracy between 17.68% and 3.04%). By

relaxing protections against colluding parties, distributed DP can

achieve accuracy closer to our method, as seen in the 5 colluding

setting experiments (we improve mean accuracy between 1.97%

and 0.51%). While our sampling method improves significantly on

computational overhead compared to the previous work (Table 1),

the computational cost of MPC sampling aggregated over many

model parameters remains substantial (requiring 500-721 seconds
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Figure 8: The convergence plots on SST2 dataset. Baseline
shows the results for DP-FL with central continuous Gaussian sam-

pled at the server side (without discretization). For Ours, we dis-

cretize the clients’ gradient updates and add the centralized discrete

Gaussian noise as if it is sampled from the secure MPC protocol.

In addition, we show the performance of DP-FL with distributed

noises but with 5 or 9 out of 10 clients colluding. In such cases,

each client samples and adds noises as if only (10−num_colluding)
client(s) will contribute to the additive noise. This leads to more

total noise added during the training than for the centralized case,

which degrades the model performance more. We run every ex-

periment five times and plot the 95% confidence interval. In the

legend, we report the final evaluation accuracy values in the format

of mean ± std. In general, the cases with more colluding clients

lead to lower evaluation accuracy values and slower convergence.

Ours has slightly slower convergence and final evaluation accuracy

than those of the Baseline method, but comparable.

Table 3: End-to-end accuracy improvement vs. computational
overhead for DP collaborative learning with 10 parties on
4 datasets. We show the improvement in mean model accu-
racy (Δ Acc) of our method compared to distributed DP with
noise calibrated to protect from 9 and 5 colluding clients
respectively (note that our method gives protection against
all-but-one corruption, equivalent to the 9 colluding case).
We also report runtime (WAN setting) and communication
overhead of MPC noise sampling per training round.

Dataset Δ Acc

(9 collude)

Δ Acc

(5 collude)

Time

(s/round)

Communication

(GB/round)

SST2 6.24 1.17 610 25.01

QNLI 3.04 0.51 666 27.29

MNLI 17.68 1.64 721 29.56

QQP 6.26 1.97 500 20.47

and 20.47-29.56 GB communication per training round). Thus, while

our method achieves the highest level of accuracy and collusion

protection, the accuracy/overhead tradeoff is substantially better in

settings that demand strict privacy guarantees against many collud-

ing parties. This underscores the importance of further improving

the efficiency in future work, to make MPC sampling practical in a

wider range of contexts.
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6 Conclusions
In this work, we proposed a novel method for MPC noise sampling,

tailored for the collaborative learning setting. Our method takes an

arbitrary discrete distribution 𝑋 as input, and finds a statistically

indistinguishable approximation of 𝑋 which can be sampled via a

series of table lookups. This allows it to be sampled via our highly

optimized protocol for uniform random table lookups in the semi-

honest model. This approach is a departure from previous methods

for MPC noise sampling, which work ‘top-down’ to adapt sampling

algorithms for particular distributions of interest to theMPC setting.

Our ‘bottom-up’ design, which generically adapts distributions of

interest so that they are suitable for our MPC sampling method,

results in improved efficiency and flexibility. Through our experi-

ments, we show that our novel protocol improves substantially in

terms of runtime and communication in comparison to prior works,

especially at higher number of participating parties. We provide

proofs that the noise sampled using our protocol is statistically

indistinguishable to the distributions ingested as input. In addition,

we conduct an end-to-end simulation of using the proposed MPC

noise sampling method in collaborative training.

Limitations and Future Work. Our generic design pattern offers

several opportunities for extensions and additional applications.

• Security Model. It may be of interest to perform noise generation

in the malicious security model rather than semi-honest. Ex-

ploring application of malicious-secure MPC or zero-knowledge

proof methods (e.g. [40]) for table lookups is a promising area

for future work.

• Continuous Distributions.Understanding how to apply ourmethod

to continuous noise distributions may also be of interest. An idea

similar to the snapping mechanism of [29] may provide a general

and theoretically sound way to make continuous noise distribu-

tions suitable for our sampling method.

• Further Improvements to Overhead.While our sampling method

improves computational costs substantially compared to previ-

ous work, it still results in high runtime and communication

per training round. Further efficiency improvements are neces-

sary to make MPC sampling practical in many contexts. More

precise theoretical tools for decomposing target distributions

into table lookups, and/or characterizing a relationship between

approximation fineness and DP parameters rather than using

statistically indistinguishable noise, may enable construction of

more efficient samplers in future work.
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A Supplementary Methods

A.1 Proof of Main Theorem
Theorem 4 ((Reiteration of Main Theorem)). Let 𝑓 be the

probability mass function of an arbitrary discrete distribution with
finite support. Let 𝐷 = 𝐷𝐸𝐴(𝑓 , ℓ) be a dice ensemble obtained from
Algorithm 4, and 𝑓𝐷 be the probability mass function of the corre-
sponding distribution. Then we have

∑︁
𝑥∈𝑠𝑢𝑝𝑝 (𝑓 )

|𝑓 (𝑥) − 𝑓𝐷 (𝑥) | < 2
−ℓ .

Proof:
Fix an arbitrary discrete distribution with finite support, and

let 𝑓 be its probability mass function. Let (𝐷1, 𝐷2, 𝐷3, ...) be a se-
quence of dice ensembles defined by 𝐷𝑖 := 𝐷𝐸𝐴(𝑓 , 𝑖), and let

𝑓𝐷𝑖
be the corresponding probability mass function of each. Let

𝑑𝑖 := 1𝐷𝐴(𝐸𝑟𝑟, 2 · |𝑠𝑢𝑝𝑝 (𝑓 ) |) as in line 5 of Algorithm 4 in its 𝑖𝑡ℎ

iteration, and let 𝑓𝑑𝑖 be the corresponding probability mass function

of this die.

Define error mass functions 𝑓𝐸1
(𝑥) := 𝑓 (𝑥) ∀𝑥 ∈ 𝑠𝑢𝑝𝑝 (𝑓 ) and

𝑓𝐸𝑛 (𝑥) := 𝑓 (𝑥) − 𝑓𝐷𝑛−1
(𝑥) ∀𝑛 > 1 ∈ N. For any integer 𝑛 > 0,

define normalized forms of the error mass functions
¯𝑓𝐸𝑛 (𝑥) :=

𝑓𝐸𝑛 (𝑥 )∑
𝑥 ∈𝑠𝑢𝑝𝑝 (𝑓 ) 𝑓𝐸𝑛 (𝑥 )

.

We begin the proof by pointing out two Facts which will be

useful later.

Fact A: note that the following equality is implied by the con-

struction of Algorithm 4

𝑓𝐷𝑛
(𝑥) = 𝑓𝐷𝑛−1

(𝑥) + 𝑓𝐷𝑛−1
(⊥) · 𝑓𝑑𝑛 (𝑥)

since for every die in the ensemble besides the one in the leaf node,

the ⊥ symbols written on 𝑑𝑖−1 get replaced with placeholders for

the result of rolling 𝑑𝑖 .

Fact B: Observe that as in the corresponding Lemma 2 for 1-die

approximations, the probability mass occupied by ⊥ in the dice

ensemble has a tight relationship with the error function 𝑓𝐸𝑛 .

𝑓𝐷𝑛−1
(⊥) = 1 −

∑︁
𝑥∈𝑠𝑢𝑝𝑝 (𝑓 )

𝑓𝐷𝑛−1
(𝑥) by construction

=
∑︁

𝑥∈𝑠𝑢𝑝𝑝 (𝑓 )
𝑓 (𝑥) −

∑︁
𝑥∈𝑠𝑢𝑝𝑝 (𝑓 )

𝑓𝐷𝑛−1
(𝑥) since 𝑓 is a pmf

=
∑︁

𝑥∈𝑠𝑢𝑝𝑝 (𝑓 )
𝑓 (𝑥) − 𝑓𝐷𝑛−1

(𝑥)

=
∑︁

𝑥∈𝑠𝑢𝑝𝑝 (𝑓 )
𝑓𝐷𝑛−1

(𝑥) + 𝑓𝐸𝑛 (𝑥) − 𝑓𝐷𝑛−1
(𝑥) by def of 𝑓𝐸𝑛

=
∑︁

𝑥∈𝑠𝑢𝑝𝑝 (𝑓 )
𝑓𝐸𝑛 (𝑥) .

Accordingly, we know that
𝑓𝐸𝑛 (𝑥 )

𝑓𝐷𝑛−1
(⊥) =

¯𝑓𝐸𝑛 (𝑥) .
Now we are ready to proceed to proving the desired result by

induction.

The base case is given by

∑
𝑥∈𝑠𝑢𝑝𝑝 (𝑓 ) 𝑓 (𝑥) − 𝑓𝐷1

< 1

2
which

follows directly by Lemma 3, since𝐷1 = 𝑑1 is a 1-die approximation

of 𝑓 (𝑥).
For the inductive step, assume∑︁

𝑥∈𝑠𝑢𝑝𝑝 (𝑓 )
𝑓 (𝑥) − 𝑓𝐷𝑖−1

< 2
−(𝑖−1) .

Fact C: This implies 𝑓𝐷𝑖−1
(⊥) < 2

−(𝑖−1)
by an argument trivially

similar to Fact B.

Then we have∑︁
𝑥∈𝑠𝑢𝑝𝑝 (𝑓 )

𝑓 (𝑥) − 𝑓𝐷𝑖
(𝑥)

=
∑︁

𝑥∈𝑠𝑢𝑝𝑝 (𝑓 )
𝑓𝐷𝑖−1
(𝑥) + 𝑓𝐸𝑖 (𝑥) − 𝑓𝐷𝑖

(𝑥) by def of 𝑓𝐸𝑖

=
∑︁

𝑥∈𝑠𝑢𝑝𝑝 (𝑓 )
𝑓𝐷𝑖−1
(𝑥) + 𝑓𝐸𝑖 (𝑥) − (𝑓𝐷𝑖−1

(𝑥) + 𝑓𝐷𝑖−1
(⊥) · 𝑓𝑑𝑖 (𝑥))

by Fact A

=
∑︁

𝑥∈𝑠𝑢𝑝𝑝 (𝑓 )
𝑓𝐸𝑖 (𝑥) − 𝑓𝐷𝑖−1

(⊥) · 𝑓𝑑𝑖 (𝑥)

=
∑︁

𝑥∈𝑠𝑢𝑝𝑝 (𝑓 )
𝑓𝐷𝑖−1
(⊥) ·

𝑓𝐸𝑖 (𝑥)
𝑓𝐷𝑖−1
(⊥) − 𝑓𝐷𝑖−1

(⊥) · 𝑓𝑑𝑖 (𝑥)

multiplying by 1

=
∑︁

𝑥∈𝑠𝑢𝑝𝑝 (𝑓 )
𝑓𝐷𝑖−1
(⊥) · ¯𝑓𝐸𝑖 (𝑥) − 𝑓𝐷𝑖−1

(⊥) · 𝑓𝑑𝑖 (𝑥)

by Fact B

= 𝑓𝐷𝑖−1
(⊥)

∑︁
𝑥∈𝑠𝑢𝑝𝑝 (𝑓 )

¯𝑓𝐸𝑖 (𝑥) − 𝑓𝑑𝑖 (𝑥)

< 𝑓𝐷𝑖−1
(⊥) · 1

2

since 𝑑𝑖 is a 1-die approx of ¯𝑓𝐸𝑖 by construction, and then by Lemma 3

< 2
−(𝑖−1) · 1

2

by inductive assumption and Fact C

= 2
−𝑖 .

So the inductive step holds. □
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B For per-data point privacy guarantee
Detailed training algorithm for the clients and server for data point-

level privacy is outlined in Algorithms 8 and 9. Each client has

local dataset 𝐷𝑖 for 𝑖 ∈ [𝑁 ] and the dataset sizes | |𝐷𝑖 | | are publicly
known. The clients and the server agreed on the set of hyperpa-

rameters, e.g., the loss function 𝐿, the clipping norm, 𝑐 , the noise

multiplier, 𝜎 , the discretization granularity, 𝛾 , the bias for round-

ing, 𝛽 , the mini-batch sampling rate, 𝑝 ,𝑚 for modulus operation.

For each iteration, there is a public uniformly random sign vector

𝜉 ∈ {−1, +1}𝑑 useful for flattening the gradient vectors.

Algorithm 8 Client Training Procedure (detailed)

Input:
• the current model state𝑊

• the loss function 𝐿

• the clipping norm, 𝑐

• the noise multiplier, 𝜎

• the discretization granularity, 𝛾

• the bias 𝛽

• the mini-batch sampling rate, 𝑝

• the private training data 𝐷𝑖 for client 𝑖 ,

• 𝑚 for modulus operation

• Public uniformly random sign vector 𝜉 ∈ {−1, +1}𝑑

1: Sample mini-batch 𝐵𝑖 ∈ 𝐷𝑖 with sampling probability 𝑝 .

2: for all 𝑥𝑏 ∈ 𝐵𝑖 do
3: 𝑔𝑏 ← ∇𝑊 𝐿(𝑊,𝑥𝑏 ) {compute example-wise gradient}

4: 𝑔𝑏
′ ← 1

𝛾
(𝑔𝑏 · min{1, 𝐶

| |𝑔𝑏 | |2
}) {clip and scale the gradient}

5: 𝑔𝑏
′′ ← 𝐻𝑑𝐷𝜉𝑔𝑏

′
where 𝐻 ∈ {−1/

√
𝑑, +1/

√
𝑑 } is a Walsha-Hadamard

matrix satisfying 𝐻𝑇𝐻 = 𝐼 and 𝐷𝜉 ∈ {−1, 0, +1}𝑑×𝑑 is a diagonal matrix with

𝜉 on the diagonal {flatten the gradient}

6: repeat 𝑔𝑏 = randomized round(𝑔𝑏 ′′ ) until | |𝑔𝑏 | |2 ≤ min

{
𝑐/𝛾 +

√
𝑑,

√︃
𝑐2/𝛾2 + 1

4
𝑑 +

√︁
2 log 1/𝛽 · (𝑐/𝛾 + 1

2

√
𝑑 )

}
{rounding}

7: end for
8: Δ𝑊𝑖 =

∑
𝑏 𝑔𝑏

9: output Δ𝑊𝑖 mod𝑚 for secure MPC

Full Appendices
The full version of our paper with the remaining appendices can

be found at: https://eprint.iacr.org/2025/1025.pdf

Algorithm 9 Server Training Procedure (detailed)

Input:
• the previous model state𝑊𝑡−1

• the noise multiplier, 𝜎

• the discretization granularity, 𝛾

• 𝑚 for modulus operation

• the client dataset sizes | |𝐷𝑖 | | (assumed to be public). calculate

the overall mini-batch size 𝐵 = 𝑝 ·∑𝑁
𝑖 | |𝐷𝑖 | |

• Public uniformly random sign vector 𝜉 ∈ {−1, +1}𝑑
• the models updates Δ𝑊 = ((∑𝑖 Δ𝑊

′
𝑖
mod𝑚) + (NZ (0, 𝜎2/𝛾2)

mod𝑚)) mod𝑚 via secure MPC {this is equivalent to aggregating all

scaled, flattened, and rounded gradient vectors: =

(∑𝐵
𝑏
𝑔𝑏 + (NZ (0, 𝜎2/𝛾2 ) )

)
mod𝑚}

1: Map Δ𝑊 to Δ𝑊
′ ∈ [−𝑚/2,𝑚/2]𝑑 ∩ Z𝑑

{Δ𝑊
′
mod𝑚 = Δ𝑊 }

2: Δ𝑊 = 𝛾𝐷𝜉𝐻
𝑇
𝑑
Δ𝑊
′

3: output𝑊𝑡 =𝑊𝑡−1+ optimizer(Δ𝑊 /𝐵)

C Definition and Notation
We leverage the following definition from [23], which is originally

designed for FL with distributed DP guarantee. We also perform a

similar utility and privacy analysis here for our centralized noise ad-

dition inside secure MPC protocol. The differences are highlighted

in red.

Definition 4 (Randomized Rounding [23]). Let 𝛾 > 0 and
𝑑 ∈ N. Define 𝑅𝛾 : R𝑑 → 𝛾Z𝑑 (where 𝛾Z𝑑

:= {(𝛾𝑧1, 𝛾𝑧2, · · · , 𝛾𝑧𝑑 ) :

𝑧1, · · · , 𝑧𝑑 ∈ Z} ⊂ R𝑑 ) as follows. For 𝑥 ∈ [0, 𝛾]𝑑 , 𝑅𝛾 (𝑥) is a product
distribution on {0, 𝛾}𝑑 with mean 𝑥 ; that is, indepdently for each
𝑖 ∈ [𝑑], we haveP[𝑅𝛾 (𝑥)𝑖 = 0] = 1−𝑥𝑖/𝛾 andP[𝑅𝛾 (𝑥)𝑖 = 𝛾] = 𝑥𝑖/𝛾 .
In general, for 𝑥 ∈ R𝑑 , we have 𝑅𝛾 (𝑥) = 𝛾 ⌊𝑥/𝛾⌋ + 𝑅𝛾 (𝑥 − 𝛾 ⌊𝑥/𝛾⌋);
here 𝛾 ⌊𝑥/𝛾⌋ ∈ 𝛾Z𝑑 is the point 𝑥 rounded down coordinate-wise to
the grid.

Definition 5 (Conditional Randomized rounding [23]). Let
𝛾 > 0 and 𝑑 ∈ N and 𝐺 ⊂ R𝑑 . Define 𝑅𝐺𝛾 : R𝑑 → 𝛾Z𝑑 ∩ 𝐺 to be
𝑅𝛾 conditioned on the output being in 𝐺 . That is, P[𝑅𝐺𝛾 (𝑥) = 𝑦] =
P[𝑅𝛾 (𝑥) = 𝑦]/P[𝑅𝛾 (𝑥) ∈ 𝐺] for all 𝑦 ∈ 𝛾Z𝑑 ∩𝐺 , where 𝑅𝛾 is as in
Definition 4.

Proposition 5 (Randomized Rounding + Centralized Dis-

crete Gaussian). Leveraging Proposition 26 in [23], the utility for
our centralized discrete Gaussian is as follows, with the difference
from [23] which uses distributed discrete Gaussian noise highlighted
in red:

Let 𝛽 ∈ [0, 1), 𝜎2 ≥ 1

2
𝛾 > 0, and 𝑐 > 0. Let

Δ2

2
:= min


𝑐2 + 1

4
𝛾2𝑑 +

√︁
2 log(1/𝛽) · 𝛾 ·

(
𝑐 + 1

2
𝛾
√
𝑑

)
,(

𝑐 + 𝛾
√
𝑑

)
2

 ,

𝐺 :=

{
𝑦 ∈ R𝑑

: ∥𝑦∥2
2
≤ Δ2

2

}
,

𝜀 :=
Δ2

𝜎
.
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Let 𝑅𝐺𝛾 be as in Definition 5. Define a randomized algorithm 𝐴 :

(R𝑑 )𝑛 → 𝛾Z𝑑 by

𝐴(𝑥) =
[
𝑛∑︁
𝑖

𝑅𝐺𝛾

(
min

{
1,

𝑐

∥𝑥𝑖 ∥2

}
· 𝑥𝑖

)]
+ 𝛾 · 𝑌, (1)

where𝑌 ∈ Z𝑑 are independent random vectors with each entry drawn
independently from NZ (0, 𝜎2/𝛾2).

Then𝐴 satisfies 1

2
𝜀2-concentrated differential privacy. The DP guar-

antee follows from the postprocessing property of DP and Proposition 5
and

Let 𝑥1, · · · , 𝑥𝑛 ∈ R𝑑 with ∥𝑥𝑖 ∥2 ≤ 𝑐 for all 𝑖 ∈ [𝑛]. Then the
following hold. 




E [𝐴(𝑥)] − 𝑛∑︁

𝑖

𝑥𝑖







2

≤ 𝛽 · 𝛾 ·
√
𝑑 · 𝑛

1 − 𝛽 .

E
[
∥𝐴(𝑥) − E [𝐴(𝑥)] ∥2

2

]
≤ 𝛾2 · 𝑑 · 𝑛

4(1 − 𝛽) + 𝑑 · 𝜎
2 .

E







𝐴(𝑥) − 𝑛∑︁

𝑖

𝑥𝑖






2

2

 ≤
𝛾2 · 𝑑 · 𝑛
4(1 − 𝛽) +

(
𝛽

1 − 𝛽 𝛾
√
𝑑𝑛

)
2

+ 𝑑 · 𝜎2

∀𝑡 ∈ R𝑑 E

[
exp

(〈
𝑡, 𝐴(𝑥) −

𝑛∑︁
𝑖

𝑥𝑖

〉)]
≤

exp

((
𝛾2

8
·𝑛 + 𝜎2

2

)
· ∥𝑡 ∥2

2

)
(1 − 𝛽)𝑛 .

Flattening [23] Since the inputs may be heavily concentrated

on one coordinate. Hence, before modular clipping, the input vec-

tors shall be flattened by multiplying them with a random unitary

matrix or rotary 𝑈 ∈ R𝑑×𝑑
, where 𝑈 −1 = 𝑈𝑇

. 𝑈 −1
is multiplied

to undo this operation at the end. Fix 𝑥 ∈ R and 𝑖 ∈ [𝑑]. Then
E

[
𝑒𝑡 (𝑈𝑥 )𝑖

]
≤ 𝑒𝑡

2 | |𝑥 | |2
2
/2𝑑 , ∀𝑡 ∈ R and ∀𝑖 ∈ [𝑑]. However, simply

using a unitary or rotary matrix here is not ideal due to several

reasons. We followed the same flattening procedure as proposed

by [23]: let 𝐻 ∈ {−
√︁
𝜌/𝑑, +

√︁
𝜌/𝑑} be a Walsha-Hadamard matrix

satisfying 𝐻𝑇𝐻 = 𝐼 , let 𝜉 ∈ {−1, +1}𝑑 be the public uniformly

random sign vector and 𝐷𝜉 ∈ {−1, 0, +1}𝑑×𝑑 is a diagonal matrix

with 𝜉 on the diagonal. Fix 𝑥 ∈ R and 𝑖 ∈ [𝑑]. Flattening is the

operation 𝑦 = 𝐻𝐷𝜉𝑥 , which has the desired utility guarantee: let

𝑌 = (𝐻𝐷𝜉𝑥)𝑖 ∈ R. Then E
[
𝑒𝑡𝑌

]
≤ 𝑒𝑡

2 | |𝑥 | |2
2
𝜌/2𝑑 , ∀𝑡 ∈ R. Optimal-

ity is attained when 𝜌 = 1.

Definition 6 (Modular clipping [23]). For𝑎 < 𝑏, define𝑀[𝑎,𝑏 ] :

R→ [𝑎, 𝑏] by𝑀 (𝑥) = 𝑥 + (𝑏 − 𝑎) · 𝑛 where 𝑛 ∈ Z is chosen so that
𝑥 + (𝑏 − 𝑎) · 𝑛 ∈ [𝑎, 𝑏]. (Ties are broken arbitrarily.) We also define
𝑀[𝑎,𝑏 ] (𝑥) = (𝑀[𝑎,𝑏 ] (𝑥1), 𝑀[𝑎,𝑏 ] (𝑥2), · · · , 𝑀[𝑎,𝑏 ] (𝑥𝑑 )) ∈ [𝑎, 𝑏]𝑑 for
𝑥 ∈ R𝑑 . It has the property that ∀𝑎 < 𝑏 ∀𝑥,𝑦 ∈ R 𝑀[𝑎,𝑏 ] (𝑥 + 𝑦) =
𝑀[𝑎,𝑏 ] (𝑀[𝑎,𝑏 ] (𝑥) +𝑀[𝑎,𝑏 ] (𝑦)) .

Theorem 6 (Randomized rounding, flattening, modular

clipping, and centralized discrete Gaussian). Leveraging The-
orem 36 in [23], the utility for our centralized discrete Gaussian is as
follows, with the difference from [23] which uses distributed discrete
Gaussian noise highlighted in red: Let 𝛽 ∈ [0, 1), 𝜎2 ≥ 1

2
𝛾 > 0, and

𝑐 > 0. Let 𝑛,𝑑 ∈ N and 𝜌 ≥ 1. Let 𝑈 ∈ R𝑑×𝑑 be a random unitary

matrix such that

∀𝑥 ∈ R𝑑 ∀𝑖 ∈ [𝑑] ∀𝑡 ∈ R E [exp(𝑡 (𝑈𝑥)𝑖 )] ≤ exp(𝑡2𝜌 ∥𝑥 ∥2
2
/2𝑑).

Let

Δ2

2
:= min


𝑐2 + 1

4
𝛾2𝑑 +

√︁
2 log(1/𝛽) · 𝛾 ·

(
𝑐 + 1

2
𝛾
√
𝑑

)
,(

𝑐 + 𝛾
√
𝑑

)
2

 ,

𝐺 :=

{
𝑦 ∈ R𝑑

: ∥𝑦∥2
2
≤ Δ2

2

}
,

𝜀 :=
Δ2

𝜎
.

Let 𝑅𝐺𝛾 be as in Definition 5. Let 𝑟 > 0 and let 𝑀[−𝑟,𝑟 ] be as in
Definition 6. Let 𝐴(𝑥) be as defined in Equation 1 We have






E [𝐴(𝑈𝑥)] −
𝑛∑︁
𝑖

𝑥𝑖







2

≤ 𝛽 · 𝛾 ·
√
𝑑 · 𝑛

1 − 𝛽 .

E
[
∥𝐴(𝑈𝑥) − E [𝐴(𝑈𝑥)] ∥2

2

]
≤ 𝛾2 · 𝑑 · 𝑛

4(1 − 𝛽) + 𝑑 · 𝜎
2 .

E







𝐴(𝑈𝑥) −𝑈

𝑛∑︁
𝑖

𝑥𝑖






2

2

 ≤
𝛾2 · 𝑑 · 𝑛
4(1 − 𝛽) +

(
𝛽

1 − 𝛽 𝛾
√
𝑑𝑛

)
2

+ 𝑑 · 𝜎2

E

exp
©­«𝑡 ·

(
𝐴(𝑈𝑥) −𝑈

𝑛∑︁
𝑖

𝑥𝑖

)
𝑗

ª®¬
 ≤

exp

((
𝛾2

8
·𝑛 + 𝜎2

2

)
· 𝑡2

)
(1 − 𝛽)𝑛 ,

∀𝑡 ∈ R ∀𝑗 ∈ [𝑑]

E
[
exp

(
𝑡 · (𝐴(𝑈𝑥)) 𝑗

)]
≤ exp

©­« 𝑡
2𝜌

2𝑑






 𝑛∑︁
𝑖

𝑥𝑖






2

2

ª®¬
·

exp

((
𝛾2

8
·𝑛 + 𝜎2

2

)
· 𝑡2

)
(1 − 𝛽)𝑛

∀𝑡 ∈ R ∀𝑗 ∈ [𝑑] .

Define a randomized algorithm 𝐴̃ : (R𝑑 )𝑛 → 𝛾Z𝑑 by

𝐴̃(𝑥) = 𝑈𝑇𝑀[−𝑟,𝑟 ]

((
𝑛∑︁
𝑖

𝑅𝐺𝛾

(
min

{
1,

𝑐

∥𝑥𝑖 ∥2

}
·𝑈𝑥𝑖

))
+ 𝛾 · 𝑌

)
,

(2)

where𝑌 ∈ Z𝑑 are independent random vectors with each entry drawn
independently from NZ (0, 𝜎2/𝛾2).

Then 𝐴̃ satisfies 1

2
𝜀2-concentrated differential privacy.

Let 𝑥1, · · · , 𝑥𝑛 ∈ R𝑑 with ∥𝑥𝑖 ∥2 ≤ 𝑐 for all 𝑖 ∈ [𝑛]. Let

𝜎̂2 (𝑥) :=
𝜌

𝑑






 𝑛∑︁
𝑖

𝑥𝑖






2

2

+
(
𝛾2

4

+ 𝜎2

)
· 𝑛 ≤ 𝜌

𝑑
𝑐2𝑛2 +

(
𝛾2

4

·𝑛 + 𝜎2

)
(3)
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If 𝜎̂2 (𝑥) ≤ 𝑟2, then

E







𝐴̃(𝑥) − 𝑛∑︁

𝑖

𝑥𝑖






2

2

 (4)

≤ 𝑑 · 𝑛
1 − 𝛽 ·

©­«2

√
2 · 𝑟 · 𝑒−𝑟 2/4𝜎̂2 (𝑥 )√︁
𝑛 · (1 − 𝛽)𝑛−1

+

√︄
𝛾2

4

+ 𝛽2𝛾2𝑛

1 − 𝛽 +
(1 − 𝛽)𝜎2

𝑛

ª®¬
2

.

(5)

D For per-client privacy guarantee

Algorithm 10 Client Training Procedure

Input:
• the current model state𝑊

• the loss function 𝐿

• the clipping norm, 𝑐

• the noise multiplier, 𝜎

• the discretization granularity, 𝛾

• the bias 𝛽

• the private training data 𝐷𝑖 for client 𝑖 ,

• 𝑚 for modulus operation

• Public uniformly random sign vector 𝜉 ∈ {−1, +1}𝑑

1: 𝑔𝑖 ← local model update on local data 𝐷𝑖

2: 𝑔𝑖
′ ← 1

𝛾 (𝑔𝑖 ·min{1, 𝑐
| |𝑔𝑖 | |2 }) {clip and scale the gradient}

3: 𝑔𝑖
′′ ← 𝐻𝑑𝐷𝜉𝑔𝑖

′
where 𝐻 ∈ {−1/

√
𝑑, +1/

√
𝑑} is a Walsha-

Hadamard matrix satisfying 𝐻𝑇𝐻 = 𝐼 and 𝐷𝜉 ∈ {−1, 0, +1}𝑑×𝑑
is a diagonal matrix with 𝜉 on the diagonal {flatten the gradient}

4: repeat 𝑔𝑖 = randomized round(𝑔𝑖 ′′ ) until | |𝑔𝑖 | |2 ≤ min

{
𝑐/𝛾 +

√
𝑑,

√︃
𝑐2/𝛾2 + 1

4
𝑑 +

√︁
2 log 1/𝛽 · (𝑐/𝛾 + 1

2

√
𝑑 )

}
5: Δ𝑊𝑖 =

∑
𝑏 𝑔𝑖

6: output Δ𝑊𝑖 mod𝑚 for secure MPC

To leverage the centralized noise sampling method for client-

level privacy guarantee, one can followAlgorithms 10 and 11, which

is equivalent replacing the distributed noise with centralized noise

of the main algorithm in [23]. The utility analysis for the Algo-

rithms 10 and 11 is the same as described in Appendix C, where

𝑛 here represents the number of clients that aggregate the client

updates, instead of the aggregate mini-batch sizes.

E Additional Experimental Setup
In this work, we closely followed the algorithms and notations

in [23] to scale, flatten, round, andmodular clip the gradients update

produced by each participants. For each vector 𝑥 ∈ R𝑑 , 𝑑 ∈ N
to be discretized, let 𝛾 > 0 be the granularity for discretization.

We use the default values as in [23]: the bias 𝛽 = 𝑒−1/2
, range

for modular clipping 𝑚 = 2
16

(i.e., 16 bits); for a fixed number

of bits (𝑛_𝑏𝑖𝑡𝑠), we use the heuristics to choose the discretization

granularity 𝛾 by making sure the range 𝑚 includes 𝑘 standard

deviations of (∑𝐵
𝑏
𝑔𝑏 ) + 𝑌 , i.e., that 2𝑘𝜎̂ ≤ 2

𝑛_𝑏𝑖𝑡𝑠 · 𝛾 (𝑔𝑏 , 𝛾, 𝐵 and

𝑌 are as defined in Algorithms 6 and 7), where 𝜎̂2 = 1

𝑑
𝑐2𝐵2 +(

𝛾2

4
·𝐵 + 𝜎2

)
. 𝑘 = 4 is used in all our experiments. This is similar

Algorithm 11 Server Training Procedure

Input:
• the previous model state𝑊𝑡−1

• the number of clients in this training run 𝑛_clients

• the noise multiplier, 𝜎

• the discretization granularity, 𝛾

• 𝑚 for modulus operation

• Public uniformly random sign vector 𝜉 ∈ {−1, +1}𝑑
• the models updates Δ𝑊 = ((∑𝑖 Δ𝑊

′
𝑖
mod𝑚) + (NZ (0, 𝜎2/𝛾2)

mod𝑚)) mod𝑚 via secure MPC

1: Map Δ𝑊 to Δ𝑊
′ ∈ [−𝑚/2,𝑚/2]𝑑 ∩ Z𝑑

{Δ𝑊
′
mod𝑚 = Δ𝑊 }

2: Δ𝑊 = 𝛾𝐷𝜉𝐻
𝑇
𝑑
Δ𝑊
′

3: output𝑊𝑡 =𝑊𝑡−1+ optimizer(Δ𝑊 /𝑛_clients)

Table 4: Hyperparameters for the experiments. All experi-
ments use 10 clients. The datasets are equally splitted to simulate

the local data of the clients. RoBERTa-base model is used for all

experiments. The soft prompts and the classifier layers of the mod-

els are fine-tuned while all other parameters are frozen during the

training. BS is the aggregate batch size (i.e., 𝐵 =
∑
𝑖 𝐵𝑖 from Algo-

rithm 7). LR is the learning rate. 𝜖 is the privacy budget. Grad is the

maximum gradient norm 𝑐 as defined in Algorithm 6. p-len is the

length of the soft prompts.

data model BS LR 𝜖 Grad Epochs p-len
sst2 base 900 0.05 8.0 0.01 21 9

QNLI base 1050 0.005 8.0 0.05 100 10

QQP base 1050 0.05 8.0 0.1 10 7

MNLI base 1050 0.005 8.0 0.05 60 10

to the one described in [23] with the difference highlighted in

red. We use similar hyperparameters for FL with data point-level

privacy protection (Section 5.2) as prior work on DP fine-tuning

soft prompts [7], as summarized in Table 4.

F Additional Experiments

F.1 Latency Dependence for Prior Work
We benchmark the cost of prior work for four parties for different

latency settings and a bandwidth up to 1 Gbps as shown in Figure ??.

F.2 DP-FL additional experiments
Additional experimental results on QNLI, QQP, and MNLI are

shown in Figures ??, 11, and 12 respectively. The experiments are

conducted for five runs in each case. The final accuracy scores

(mean ± std) are shown in Table ??.
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Ours: 77.31+/-0.84
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9 Colluding: 71.05+/-3.17

Figure 11: The convergence plots on QQP dataset. This is a
reproduction of Figure 8 using QQP dataset with five training runs

for each of the four cases.
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Figure 12: The convergence plots on MNLI dataset. This is a
reproduction of Figure 8 using MNLI dataset with five training

runs for each of the four cases.
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