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Abstract

Image AutoRegressive generation has emerged
as a new powerful paradigm with image autore-
gressive models (IARs) matching state-of-the-art
diffusion models (DMs) in image quality (FID:
1.48 vs. 1.58) while allowing for a higher
generation speed. However, the privacy risks
associated with IARs remain unexplored, raising
concerns regarding their responsible deployment.
To address this gap, we conduct a comprehensive
privacy analysis of IARs, comparing their privacy
risks to the ones of DMs as reference points.
Concretely, we develop a novel membership
inference attack (MIA) that achieves a remarkably
high success rate in detecting training images
(with a True Positive Rate at False Positive
Rate = 1% of 86.38% vs. 6.38% for DMs with
comparable attacks). We leverage our novel
MIA to provide dataset inference (DI) for IARs,
and show that it requires as few as 6 samples to
detect dataset membership (compared to 200 for
DI in DMs), confirming a higher information
leakage in IARs. Finally, we are able to extract
hundreds of training data points from an IAR
(e.g., 698 from VAR-d30). Our results suggest a
fundamental privacy-utility trade-off: while IARs
excel in image generation quality and speed, they
are empirically significantly more vulnerable to
privacy attacks compared to DMs that achieve
similar performance. We release the code
at https://github.com/sprintml/
privacy_attacks_against_iars for
reproducibility.
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1. Introduction
The field of visual generative modeling has seen rapid ad-
vances in recent years, primarily due to the rise of Diffusion
Models (DMs) (Sohl-Dickstein et al., 2015) that achieve
impressive performance in generating highly detailed and
realistic images. For this ability, they currently act as the
backbones of commercial image generators (Rombach et al.,
2022; Team, 2022; Saharia et al., 2022). Yet, recently,
their performance was closely matched or further surpassed
through novel image autoregressive models (IARs). Over
the last months, IARs have been achieving new state-of-
the-art performance for class-conditional (Tian et al., 2024;
Yu et al., 2024; Li et al., 2024) and text-conditional (Han
et al., 2024; Tang et al., 2024; Fan et al., 2024) generation.
The crucial improvement of their training cost and gener-
ation quality results from the scaling laws that previously
were observed for large language models (LLMs) (Kaplan
et al., 2020) with which they share both a training paradigm
and architectural foundation. As a result, with more com-
pute budget, and larger datasets, IARs can achieve better
performance than their DM-based counterparts.

At the same time, the privacy risks of IARs remain largely
unexplored, posing challenges for their responsible deploy-
ment. While privacy risks, such as the leakage of training
data points at inference time, have been demonstrated for
DMs and LLMs (Carlini et al., 2021; 2023; Duan et al.,
2023a;b; Hanke et al., 2024; Huang et al., 2024; Wen et al.,
2024; Hayes et al., 2025), no such evaluations currently exist
for IARs. As a result, the extent to which IARs may simi-
larly expose sensitive information remains an open question,
underscoring the necessity for rigorous privacy investiga-
tions in this context.

To address this gap and investigate the privacy risks associ-
ated with IARs, we conduct a comprehensive analysis using
multiple perspectives on privacy leakage. First, we develop
a new membership inference attack (MIA) (Shokri et al.,
2017), which aims to determine whether a specific data
point was included in an IAR’s training set—a widely used
approach for assessing privacy risks. We find that existing
MIAs developed for DMs (Carlini et al., 2023; Duan et al.,
2023c; Kong et al., 2023; Zhai et al., 2024) or LLMs (Mat-
tern et al., 2023; Shi et al., 2024), are ineffective for IARs, as
they rely on signals specific to their target model. We com-
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Figure 1: Privacy-utility and generation speed-performance trade-off for IARs compared to DMs. 1) IARs achieve
better and faster image generation, but reveal more information to potential training data identification attacks. 2) In
particular, large IAR models are most vulnerable. 3) In case of large IARs, even the identification of individual training
samples (MIAs) has a high success rate. 4) MAR models are more private than other IARs. We attribute it to the inclusion
of a diffusion module in this architecture.

bine elements of MIAs from DMs and LLMs into our new
MIA based on the shared properties between the models. For
example, we leverage the fact that IARs, similarly to LLMs,
perform per-token prediction to obtain signal from every
predicted token. However, while LLMs’ training is fully
self-supervised (e.g., by predicting the next word), the train-
ing of IARs can be conditional (based on a class or prompt)
as in DMs. We exploit this property, previously leveraged
for DMs (Zhai et al., 2024), and compute the difference
in outputs between conditional and unconditional inputs
as an input to MIAs. This approach allows us to achieve a
remarkably strong performance of 86.38% TPR@FPR=1%.

We employ our novel MIA to provide an efficient dataset
inference (DI) (Maini et al., 2021) method for IARs. DI gen-
eralizes MIAs by assessing membership signals over entire
datasets, providing a more robust measure of privacy leak-
age. Additionally, we optimize DI for IARs by eliminating
the stage of MIA selection for a given dataset, which was
necessary for prior DIs on LLMs (Maini et al., 2024; Zhao
et al., 2025) and DMs (Dubiński et al., 2025). Since our
MIAs for IARs consistently produce higher scores for mem-
bers than for non-members, all MIAs can be utilized without
any selection. This optimizations reduced the number of
samples required for DI in IARs to as few as 6 samples,
which is significantly fewer than at least 200 samples re-
quired for DI in DMs. Finally, we examine the privacy
leakage from IARs through the lens of memorization (Feld-
man, 2020; Wen et al., 2024; Huang et al., 2024; Wang
et al., 2024a;b; Hintersdorf et al., 2024; Wang et al., 2025).
Specifically, we assess the IARs’ ability to reproduce ver-
batim outputs from their training data during inference. We
experimentally demonstrate that the evaluated IARs have a
substantial tendency to verbatim memorization by extracting
698 training samples from VAR-d30, 36 from RAR-XXL,
and 5 from MAR-H. These results highlight the varying
degrees of memorization across models and reinforce the
importance of mitigating privacy risks in IARs. Together,

these approaches form a comprehensive framework for em-
pirically evaluating the privacy risks of IARs.

Our empirical analysis of state-of-the-art IARs and DMs
across various scales suggests that IARs that match their
DM-counterparts in image generative capabilities are no-
tably more susceptible to privacy leakage. We also explore
the trade-offs between privacy risks and other model prop-
erties. Specifically, we find that, while IARs are more
cost-efficient, faster, and more accurate in generation than
DMs, they empirically exhibit significantly greater privacy
leakage (see Figure 1) measured against SOTA privacy at-
tacks tailored against the respective model types. These
findings highlight a critical trade-off between performance,
efficiency, and privacy in IARs.

In summary, we make the following contributions:

• Our new MIA for IARs achieves extremely strong perfor-
mance of even 86.38% TPR@FPR=1%, improving over
naive application of MIAs by up to 69%

• We provide a potent DI method for IARs, which requires
as few as 6 samples to assess dataset membership signal.

• We propose an efficient method of training data extraction
from IARs, and successfully extract up to 698 images.

• IARs can outperform DMs in generation efficiency and
quality but suffer order-of-magnitude higher privacy
leakage in MIAs, DI, and data extraction compared to
DMs that demonstrate similar FID.

2. Background and Related Work
Notation. We first introduce the notation used throughout
the remainder of this paper:
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Symbol Description

C,H,W,N Channels, height, width, sequence length
x ∈ RC×H×W Original image
x̂ ∈ RC×H×W Generated image
t ∈ NN Tokenized image
t̂ ∈ NN Generated token sequence

Image AutoRegressive modeling. Originally, Chen et al.
(2020) defined image autoregressive modeling as:

p(x) =

N∏
n=1

p(tn | t1, t2, . . . , tn−1), (1)

where N is the number of pixels in the image, ti is the value
of ith pixel of image x ∼ Dtrain (training data), where pixels
follow raster-scan order, row-by-row, left-to-right. During
training, the goal is to minimize negative log-likelihood:

LAR = Ex∼Dtrain [−log (p (x))] . (2)

However, learning pixel-level dependencies directly is
computationally expensive. To address the issue, VQ-
GAN (Esser et al., 2020) transforms the task from next-
pixel to next-token prediction. First, the VQ-GAN’s encoder
maps an image into (lower resolution) latent feature vector,
which is then quantized into a sequence of tokens, by a
learnable codebook. In effect, the sequence length is short,
which enables higher-resolution and high-quality generation.
Then, tokens are generated and projected back to the im-
age space by VQ-GAN’s decoder. All the subsequent IARs
we introduce, utilize tokens from VQ-GAN. This token-
based formulation aligns image generation more closely
with natural language processing. Additionally, similarly
to autoregressive language models such as GPT-2 (Radford
et al.), which generate text by sequentially predicting tokens,
modern IARs also employ transformer-based (Vaswani et al.,
2017) architectures to model dependencies between image
tokens. We focus on the recent state-of-the-art IARs.

VAR (Tian et al., 2024) is a novel approach to image gen-
eration, which shifts the focus of traditional autoregressive
learning from next-token to next-scale prediction. Unlike
classical IARs, which generate 1D token sequences from
images by raster-scan orders, VAR introduces a coarse-to-
fine multi-scale approach, encoding images into hierarchical
2D token maps and predicting tokens progressively from
lower to higher resolutions. This preserves spacial locality
and significantly improves scalability and inference speed.

RAR (Yu et al., 2024) introduces bidirectional context
modeling into IAR. Building on findings from language
modeling, specifically BERT (Devlin et al., 2019), RAR
highlights the limitations of unidirectional approach, and
enhances training by randomly permuting token sequences
and utilizing bidirectional attention. RAR optimizes Equa-
tion (2) over all possible permutations, enabling the model
to capture bidirectional dependencies, resulting in higher
quality generations.

MAR (Li et al., 2024) uses a small DM to model p(x) from
Equation (1), and samples tokens from it during inference.
MAR is trained with the following loss objective:

LDM = Eϵ,s

[
||ϵ− ϵθ (t

s
n | s, z) ||2

]
, (3)

where ϵ ∼ N (0, I), ϵθ is the DM, tsn =
√
ᾱstn+

√
1− ᾱtϵ

and ᾱs is DDIM’s (Song et al., 2020) noise schedule, s is
the timestep for diffusion process, and z is conditioning
input, obtained from the autoregressive backbone, from the
previous tokens. This loss design allows MAR to operate
with continuous-valued tokens, contrary to VAR and RAR,
which use discrete tokens. MAR also integrates masked
prediction strategies from MAE (He et al., 2022), into the
IAR paradigm. Specifically, MAR predicts masked tokens,
based on unmasked ones, formulated as p(x · ¬M | x ·M),
where M ∈ [0, 1]N is random binary mask. Like to RAR,
MAR utilizes bidirectional attention during training. Its
autoregressive backbone differs from other IARs, as MAR
employs a ViT (Dosovitskiy et al., 2021) backbone.

Sampling for IARs is based on p(x), which models the
distribution of the next token conditioned on the previous
ones in the sequence. For VAR and RAR, operating on
discrete tokens, the next token can be predicted via greedy
or top-k sampling. In contrast, MAR samples tokens by
the DM module, which performs 100 DDIM (Song et al.,
2020) denoising steps. During a single sampling step, VAR
outputs a 2D token map, RAR predicts a single token, and
MAR generates a batch of tokens.

3. Privacy Evaluation Frameworks
We assess IARs’ privacy risks from the three perspectives of
membership inference, dataset inference, and memorization.

3.1. Membership Inference

Membership Inference Attacks (MIAs) (Shokri et al., 2017)
aim to identify whether a specific data point was part of the
training dataset for a given machine learning model. Many
MIAs have been proposed for DMs (Duan et al., 2023c;
Zhai et al., 2024; Carlini et al., 2023; Kong et al., 2023),
but these methods are tailored to DM-specific properties
and do not transfer easily to IARs. For instance, some di-
rectly exploit the denoising loss (Carlini et al., 2023), while
others (Kong et al., 2023), leverage discrepancies in noise
prediction between clean and noised samples. CLiD (Zhai
et al., 2024) sources membership signal from the difference
between conditional and un-conditional prediction of the
DM. Since IARs are also trained with conditioning input,
we leverage CLiD to design our MIAs in Section 5.1.

MIAs are also popular against LLMs (Mattern et al., 2023;
Shi et al., 2024) where they often work with per-token logit
outputs of the model. For example, Shi et al. (2024) in-
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troduce the MIN-K% PROB metric, which computes the
mean of lowest k%-log-likelihoods in the sequence, where
k is a hyper-parameter. Zlib (Carlini et al., 2021) leverages
the compression ratio of predicted tokens using the zlib li-
brary (Gailly & Adler, 2004) to adjust the metric to the
level of complexity of the input sequence. Hinge (Bertran
et al., 2024) metric computes the mean distance between
tokens’ log-likelihood and the maximum of the remain-
ing log-likelihoods. SURP (Zhang & Wu, 2024) computes
the mean of log-likelihood of the tokens with the lowest
k%-log-likelihoods in the sequence, where k is some pre-
defined threshold. MIN-K%++ (Zhang et al., 2024b) is
based on MIN-K% PROB, but the per-token log-likelihoods
are normalized by the mean and standard deviation of
the log-likelihoods of preceding tokens. CAMIA (Chang
et al., 2024) computes the mean of log-likelihoods that
are smaller than the mean log-likelihood, and the mean
of log-likelihoods that are smaller than the mean of the
log-likelihoods of preceding tokens, as well as the slope
of log-likelihoods. More detailed description of MIAs can
be found in Appendix D.2. While LLM MIAs seem to be
a natural choice for membership inference on IARs, it is
completely unclear whether approaches from the language
domain transfer to IARs. In our work we show that the
success of this transferability is limited (see Section 5.1),
hence, we design novel MIAs, by exploiting unique proper-
ties of IARs. Our methods achieve significant improvements
over initial MIAs with up to 69% higher TPR@FPR=1%
compared to the baselines.

3.2. Dataset Inference

Dataset Inference (DI) (Maini et al., 2021) aims to deter-
mine whether a specific dataset was included in a model’s
training set. Therefore, instead of focusing on individual
data points like MIAs, DI aggregates the membership signal
across a larger set of training points. With this strong signal,
it can uniquely identify whether a model was trained on a
given (private) dataset, leveraging strong statistical evidence.
Similarly to MIAs, DI can serve as a proxy for estimating
privacy leakage from a given machine learning model: DI
provides insight into how easily one can determine which
datasets were used to train a model, for instance, by analyz-
ing the effect size from statistical tests. A higher success
rate in DI indicates greater potential privacy leakage.

Previous DI Methods. For supervised models, DI involves
the following three steps: (1) obtaining specific features
from data samples, based on the observation that training
data points are further from decision boundaries than test
samples, then (2) aggregating the extracted information
through a binary classifier, and (3) applying statistical tests
to identify the model’s train set. This approach was later
extended to self-supervised learning models (Dziedzic et al.,
2022a;b), where training data representations differ from

test data, and then to LLMs (Maini et al., 2024; Zhao et al.,
2025) and DMs (Dubiński et al., 2025) to identify the train-
ing datasets in large generative models. Since DI relies on
model-specific properties, it is unclear how it can be ap-
plied to IARs. We propose how to make DI applicable and
effective for IARs.

Setup for DI. DI relies on two data sets: (suspected) mem-
ber and (confirmed) non-member sets. First, the method
extracts features for each sample using MIAs. Next, it
aggregates the features for each sample, and obtains the
final score, which is designed so that it should be higher
for members. Then, it formulates the following hypothesis
test: H0 : mean(scores of suspected member samples) ≤
mean(scores of non-members), and uses the Welch’s t-test
for evaluation. If we reject H0 at a confidence level
α = 0.01, we claim that we confidently identified suspected
members as actual members of the training set.

Since the strength of the t-test depends on the size of both
sample sets, the goal is to reject H0 with as few samples as
possible. Intuitively, as the difference in a model’s behav-
ior between member and non-member samples increases,
rejecting H0 becomes easier. A larger difference also indi-
cates greater information leakage, allowing us to use DI to
compare models in terms of privacy risks. For instance, if
model A allows rejection of H0 with 100 samples, while
model B requires 1000 samples, model A exhibits higher
leakage than model B. Throughout this paper, we refer to
the minimum number of samples required to reject the null
hypothesis as P .

Assumptions about Data. For the hypothesis test to be
sound, the suspected member set and non-member set must
be independently and identically distributed. Otherwise,
the result of the t-test will be influenced by the distribution
mismatch between these two sets, yielding a false positive
prediction.

3.3. Memorization

Memorization in generative models refers to the models’
ability to reproduce training data exactly or nearly indistin-
guishably at inference time. While MIAs and DI assess if
given samples were used to train the model, memorization
enables extracting training data directly from the model (Car-
lini et al., 2021; 2023)—-highlights an extreme privacy risk.

In the vision domain, a data point x is memorized, if the
distance l(x, x̂) from the original x and the generated x̂
image is smaller than a pre-defined threshold τ (Carlini
et al., 2023). We use the same definition when evaluating
our extraction attack in Section 5.3.

Intuitively, in LLMs, memorization can be understood as
the model’s ability to reconstruct a training sequence t
when given a prefix c (Carlini et al., 2021). Specifically,
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t = argmaxt′∈NN pθ(t
′|c), where pθ is the probability dis-

tribution of the sequence t′, parameterized by the LLM’s
weights θ, akin to Equation (1). This formulation states we
can extract the training sequence t by constructing a prefix
c that makes the model output t, with greedy sampling.

Similarly to LLMs, IARs complete an image given an initial
portion of it (a prefix), which we leverage for designing our
data extraction attack. In contrast, extraction from DMs
can rely only on the conditioning input (class label or text
prompt), which is both costly and highly inefficient, e.g.,
work by Carlini et al. (2023) requires to generate 175M
images in order to find just 50 memorized images, and no
memorization has been shown for other large DMs. In
contrast, we extract up to 698 training samples from IARs
by conditioning them on a part of the tokenized image,
requiring only 5000 generations.

4. Experimental Setup
We evaluate state-of-the-art IARs: VAR-d{16, 20, 24, 30}
(d = model depth), RAR-{B, L, XL, XXL}, MAR-{B, L,
H}, trained for class-conditioned generation. The IARs’
sizes cover a broad spectrum between 208M for MAR-B,
and 2.1B parameters for VAR-d30. We use IARs shared by
the authors of their respective papers in their repositories,
with details in Appendix E. As these models were trained
on ImageNet-1k (Deng et al., 2009) dataset, we use it to
perform our privacy attacks. For MIA and DI, we take 10000
samples from the training set as members and also 10000
samples from the validation set as non-members. To perform
data extraction attack, we use all images from the training
data. Additionally, we leverage the known validation set to
check for false positives.

5. Our Methods for Assessing Privacy in IARs
In the following we investigate privacy risks of IARs. We
start from baseline, LLM-based approaches, and show how
to tailor them to IARs to increase privacy leakage. As we
find that IARs leak more than DMs we provide insights to
explain why does it happen.

5.1. Tailoring Membership Inference for IARs

Baselines. We comprehensively analyze how existing MIAs
designed for LLMs transfer to IARs. Our results in Table 1
(detailed in Appendix H ) indicate that off-the-shelf MIAs
for LLMs perform poorly when directly applied to IARs.
We report the TPR@FPR=1% metric to measure the true
positive rate at a fixed low false positive rate, which is a
standard metric to evaluate MIAs (Carlini et al., 2022). For
smaller models, such as VAR-d16, MAR-B, and RAR-B,
all MIAs exhibit performance close to random guessing
(∼ 1%). As model size and the number of parameters

increase, the membership signal strengthens, improving
MIAs’ performance in identifying member samples. Even
in the best case (CAMIA with TPR@FPR=1% of 16.69%
on the large VAR-d30), the results indicate that the problem
of reliably identifying member samples remains far from
being solved. These findings align with results reported for
other types of generative models, as demonstrated by Maini
et al. (2024); Zhang et al. (2024a); Duan et al. (2024) in their
evaluation of MIAs on LLMs and by (Dubiński et al., 2024;
Zhai et al., 2024) for DMs, where the utility of MIAs for
models trained on large datasets was shown to be severely
limited.

Our MIAs for VARs and RARs. To provide powerful
MIAs for IARs, we leverage the models’ key properties.
Specifically, we exploit the fact that IARs utilize classifier-
free guidance (Ho & Salimans, 2022) during training, i.e.,
in the forward pass, images are processed both with and
without conditioning information, such as class label. This
distinguishes IARs from LLMs, which are trained without
explicit supervision (no conditioning). Consequently, MIAs
designed for LLMs fail to take advantage of this additional
conditioning information present in IARs. We build on
CLiD (Zhai et al., 2024), and compute p(x|c)− p(x|cnull),
where c—class label, cnull—null class, and use this differ-
ence as an input to MIAs, instead of per-token logits. We
differ from CLiD in the following way: (1) Our method
works directly on p(x), whereas CLiD uses model loss to
perform the attack. (2) Our attack is parameter free—CLiD
requires hyperparameter search and a set of samples to fit
a Robust-Scaler to stabilize the MIA signal. We provide
a more generalized approach, moreover our results in Ta-
ble 1 demonstrate even up to a 69.69% increase in the
TPR@FPR=1% for the VAR-d30 model.

Our MIAs for MARs. Many MIAs for LLMs (Hinge, MIN-
K%++, SURP) require logits to compute their membership
scores. However, we cannot apply these MIAs to MAR
since MAR predicts continuous tokens instead of logits. We
instead use per-token loss values obtained from Equation (3)
to adapt other LLM MIAs (Loss, Zlib, MIN-K% PROB,
CAMIA). As the tokens for MAR are generated using a
small diffusion module, we can apply insights from MIAs
designed for DMs and target the diffusion module directly
in our attack. We detail our MIA improvements for MAR,
which counter randomness from the diffusion process and
binary masks.

Improvement 1: Adjusted Binary Masks. MAR extends
the IAR framework by incorporating masked prediction
strategies, where masked tokens are predicted based on
visible ones. We hypothesize that adjusting the masking
ratio during inference can amplify membership signals. We
increase this parameter from 0.86 (training average) to 0.95,
which improves MIA and suggests that an optimal masking
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Table 1: Performance of our MIAs vs baselines. We report the standard TPR@FPR=1% for best MIAs per model.
Baselines refers to a unmodified naive application of LLM-specific MIAs to IARs.

Model VAR-d16 VAR-d20 VAR-d24 VAR-d30 MAR-B MAR-L MAR-H RAR-B RAR-L RAR-XL RAR-XXL

Baselines 1.62 2.21 3.72 16.68 1.69 1.89 2.18 2.36 3.25 6.27 14.62
Our Methods 2.16 5.95 24.03 86.38 2.09 2.61 3.40 4.30 8.66 26.14 49.80

Improvement +0.54 +3.73 +20.30 +69.69 +0.40 +0.73 +1.22 +1.94 +5.41 +19.87 +35.17

rate exposes more membership information.

Improvement 2: Fixed Timestep. Carlini et al. (2023) re-
ported that MIAs on DMs perform best when executed for a
specific denoising step t. Since tokens in MAR are gener-
ated using a small diffusion module, we can take advantage
of this by executing MIAs at a fixed timestep t rather than
a randomly chosen one. Interestingly, we find that t = 500
is the most discriminative, differing from the findings for
full-scale DMs, for which t = 100 gives the strongest sig-
nal Carlini et al. (2023).

Improvement 3: Reduced Diffusion Noise Variance. The
MAR loss in Equation (3) exhibits high variance due to
its dependence on randomly sampled noise ϵ. To mitigate
this, we increase the noise sampling count from the default
4 used during training to 64, computing the mean loss to
obtain a more stable signal.

More detailed description of these improvements can be
found in Appendix G. Our results in Table 2 highlight the
importance of our changes to evaluate MAR’s privacy leak-
age correctly. Thanks to our improved MIAs we do not
under-report the privacy leakage they exhibit.

Table 2: Ablation of improvements to MAR MIAs. Each
modification further strengthens the membership signal. We
report TPR@FPR=1% values and gains.

Method MAR-B MAR-L MAR-H

Baseline 1.69 1.89 2.18
+ Adjusted Binary Mask 1.88 (+0.19) 2.25 (+0.36) 2.88 (+0.70)

+ Fixed Timestep 1.88 (+0.00) 2.41 (+0.17) 3.30 (+0.42)
+ Reduced Noise Variance 2.09 (+0.21) 2.61 (+0.20) 3.40 (+0.10)

Overall Performance and Comparison to DMs We
present our results in Figure 1, evaluate overall privacy leak-
age and compare IARs to DMs based on the TPR@FPR=1%
of MIAs. For DMs we use the strongest attack available at
the time of writing this paper—CLiD (Zhai et al., 2024). In
general, smaller and less performant models exhibit lower
privacy leakage, which increases with model size. Notably,
VAR-d30 and RAR-XXL achieve TPR@FPR=1% values of
86.38% and 49.80%, respectively, indicating a substantially
higher privacy risk in IARs compared to DMs. In contrast,
the highest TPR@FPR=1% observed for DMs is only 6.38%
for SiT-XL/2 (see also Table 18).

Possible Reasons Behind Higher Leakage of IARs With

IARs emerging as a less private alternative to DMs, we in-
vestigate the causes behind that phenomenon. First, we ask
if IARS inherently leak more because of their design. We
identify three key characteristics of IARs that cause greater
leakage: (1) Access to p(x)—IARs expose it at the out-
put, contrary to DMs. (2) AutoRegressive training exposes
IARs to more data per update. (3) Each token predicted
by an IAR leak unique information about the model, ampli-
fying leakage. We provide more details in Appendix A.1.
Next, we scrutinize architecture-agnostic causes of leakage:
training duration, and model size. Our results in Table 5
in Appendix A.2 show that indeed, these two factors cor-
relate with the leakage metrics. Interestingly, for IARs the
vulnerability differs with model size, while for DMs—with
training duration. We also test a binary factor ”Is IAR” (1
if the model is IAR, 0 otherwise), which also correlates
with metrics, further confirming our intuitions about the
inherent causes of leakage in IARs. We note taht MIAs are
significantly less effective at identifying member samples in
MARs. We attribute this to MAR’s use of a diffusion loss
function (Equation (3)) for modeling per-token probability,
which replaces categorical cross-entropy loss and eliminates
the need for discrete-valued tokenizers.

Vulnerability of IARs Through a Lens of a Unified MIA
Finally, we look into the DM- and IAR-specific MIAs used
in our study. We acknowledge that because DMs and IARs
are two different classes of models, the MIAs that target
each of the architectures also differ. Effectively, that vari-
ability might be the root cause of the observed discrepancy
in MIA success. To evaluate that idea, we design a Uni-
fied MIA—an identical MIA for DMs and IARs—based on
model- and architecture-agnostic Loss Attack (Yeom et al.,
2018). We discard any IAR-specific improvements intro-
duced in this section, and any DM-specific improvements
from prior work (Carlini et al., 2023). Effectively, with Uni-
fied MIA we mitigate the potential influence of discrepancy
in the MIA design on the final privacy assessment. Our
results in Table 7 show that Unified MIA performs better
than random guessing against IARs, while DMs show no
leakage from that attack.

5.2. Dataset Inference

While our results in Table 1 demonstrate impressive MIA
performance for large models (such as VAR-d30 with 2.1B
parameters), privacy risk assessment for smaller models
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Table 3: DI for IARs. We report the reduction in the number of samples required to carry out DI. Our improvements allow
to successfully run DI on IARs even with fewer than 10 samples. Baseline refers to LLM DI (Maini et al., 2024).

Model VAR-d16 VAR-d20 VAR-d24 VAR-d30 MAR-B MAR-L MAR-H RAR-B RAR-L RAR-XL RAR-XXL

Baseline 2000 300 60 20 5000 2000 900 500 200 40 30

+Optimized Procedure 600 200 40 8 4000 2000 800 300 80 30 10
Improvement -1400 -100 -20 -12 -1000 0 -100 -200 -120 -10 -20

+Our MIAs for IARs 200 40 20 6 2000 600 300 80 30 20 8
Improvement -400 -160 -20 -2 -2000 -1400 -500 -220 -50 -10 -2

(such as VAR-d16 with 310M parameters) needs improve-
ment. To address this, we draw on insights from previous
work on DI (Maini et al., 2024; Dubiński et al., 2025), which
has proven effective when MIAs fail to achieve satisfac-
tory performance. The advantage of DI over MIAs lies in
its ability to aggregate signals across multiple data points
while utilizing a statistical framework to amplify the overall
membership signal, yielding more reliable privacy leakage
assessment. We find that while the framework of DI is ap-
plicable to IARs, its crucial parts must be improved to boost
DI’s effectiveness on IARs. In the following we detail these
improvements.

Improvement 1: Optimized DI Procedure. Exist-
ing DI techniques for LLMs (Maini et al., 2024) and
DMs (Dubiński et al., 2025) follow a four-stage process,
with the third stage involving the training of a linear classi-
fier. This classifier is used to weight, scale, and aggregate
signals from individual MIAs, where each MIA score serves
as a separate feature. This step is crucial for selecting the
most effective MIAs for a given dataset while suppressing
ineffective ones that could introduce false results. However,
we observe that MIA features for IARs are well-behaved,
meaning that, on average, they are consistently higher for
members than for non-members. Thus, instead of training a
linear classifier on MIA features, which requires additional
auditing data, we adopt a more efficient approach: we first
normalize each feature using MinMaxScaler to the [0,1] in-
terval, and then we sum them to obtain the final per-sample
score, used by the t-test. This eliminates the need to allocate
scarce auditing data for training a linear classifier.

Our results for the optimized DI procedure are presented in
Table 3. We observe a significant reduction in the number
of samples required to perform DI for smaller models, with
reductions of up to 70% for VAR-d16.

Improvement 2: Our MIAs for IARs. Our results in Ta-
ble 3 indicate that as model size increases, the membership
signal is amplified, enabling DI to achieve better perfor-
mance with fewer samples. However, the main problem is
the mixed reliability of DI when utilizing baseline MIAs
as feature extractors. This issue is especially evident for
smaller models, such as VAR-d16 and MAR-B, where DI
requires thousands of samples to successfully reject the
null hypothesis when the suspect set is part of the training

data. Building on the performance gains of our tailored
MIAs (Table 1) we apply them to the DI framework as the
more powerful feature extractors to further strengthen DI
for IARs. Our improvements through stronger MIAs further
enhance DI, fully exposing privacy leakage in IAR models.
As a result, the number of required samples to execute DI
drops to a few hundred, for example, down to only 200 for
VAR-d16. Overall, as shown in Table 3, replacing the linear
classification model with summation and transitioning to our
MIAs for IARs as feature extractors significantly reduces
the number of samples required to reject H0.
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Figure 2: DI success for IARs vs DMs. We report the gen-
erative quality expressed with the FID score vs the number
of suspect samples P required to carry out DI.

Overall Performance and Comparison to DMs. We
present our results in Figure 2, evaluating the overall privacy
leakage and comparing IARs to DMs based on the number
of required samples (P ) to perform DI. Recall that a lower
P under the DI framework indicates greater privacy vulner-
ability, as it means fewer data points are needed to reject the
null hypothesis—H0. Our findings indicate that the same
trend observed in MIAs extends to DI. Overall, models with
a higher TPR@FPR=1% in Table 1 for MIAs also require
smaller suspect sets P for DI. Specifically, DI shows that
larger models exhibit greater privacy leakage, with VAR-
d30 and RAR-XXL being the most vulnerable. Crucially,
our results clearly demonstrate that IARs are significantly
more susceptible to privacy leakage than DMs. While MDT
shows lower generative quality (as indicated by a higher
FID score), it requires substantially more samples for DI
(higher P value), resulting in much lower privacy leakage.

Why do We (Again) Observe Higher Leakage of IARs?
MIAs are the backbone of the DI framework, extracting
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features from the samples to capture differences between
members and non-members. When they succeed more for
one class of the models, we expect that DI will also per-
form better for that class. With MIAs, we observe higher
leakage of IARs, which stems from the increased differ-
ence between the distributions of the MIA-specific score for
member and non-member samples. Because we use these
scores to perform the t-test, when the difference between
these distributions increase, we need a smaller P to reject
H0. Importantly, all insights about leakage from MIAs (Sec-
tion 5.1) also hold for DI. Results for correlation (Table 5)
and DI performance with Unified MIA as the feature extrac-
tor (Table 7) corroborate the ones for MIA, and provide an
alternative perspective into the privacy of IARs.

Figure 3: Extracted Training Samples. We note that IARs
can reconstruct verbatim images from their training data.
The first row shows the original training samples and the
second one presents the extracted images.

5.3. Extracting Training Data from IARs

To analyze memorization in IARs, we design a novel train-
ing data extraction attack for IARs. This attack builds on
elements of data extraction attacks for LLMs (Carlini et al.,
2021) and DMs (Carlini et al., 2023). Integrating elements
from both domains is required since IARs operate on tokens
(similarly to LLMs), which are then decoded and returned
as images (similarly to DMs). In particular, we make the
observation that, on the token level, IARs exhibit a similar
behavior that was previously observed for LLMs (Carlini
et al., 2021). Namely, for memorized samples, they tend
to complete the correct ending of a token sequence when
prompted with the sequence’s prefix. We exploit this behav-
ior and 1) identify candidate samples that might be mem-
orized, 2) generate them by starting from a prefix in their
token space, and sampling the remaining tokens from the
IAR, and finally 3) compare the generated image with the
original candidate image. We report a sample as memorized
when the generated image is near identical to the original
image. In the following, we detail the individual building

blocks of the attack.

1) Candidate Identification. To reduce the computational
costs, we do not simply generate a large pool of images, but
identify promising candidate samples that might be mem-
orized, before generation. Specifically, we feed an entire
tokenized image t into the IAR, which predicts the full token
sequence t̂ in a single step. Then, we compute the distance
between original and predicted sequence, d(t, t̂), which we
use to filter promising candidates. This approach is efficient,
since for IARs the entire token sequence can be processed
at once, significantly faster than if we sampled them itera-
tively. For VAR and RAR we use per-token logits, and apply

greedy sampling, with d(t, t̂) = 100− 100·
∑N

i=1 1(ti=t̂i)
N —

an average prediction error. For MAR, we sample 95% of
the tokens from the remaining 5% unmasked in a single step,
and set d(t, t̂) = ||t− t̂||22, as MAR’s tokens are continuous.
Following the intuition that t̂ is memorized if t̂ = t, for
each model, for each class we select top-5 samples with the
smallest d, and obtain 5000 candidates per model. Our can-
didate identification steps greatly improves the extraction
efficiency over previous approaches (Carlini et al., 2023).
We show the success of our filtering in Appendix K.3.

2) Generation. Then, following the methodology estab-
lished for LLMs by (Carlini et al., 2021). for each candidate
we select the first i tokens as a prefix. The parameter i is
a hyperparameter and we present our best choices for the
models in Table 21. We perform iterative greedy sampling
of the remaining tokens in the sequence for VAR and RAR,
and for MAR we sample from the DM batch by batch. We
do not use classifier-free guidance during generation. We
note that our method does not produce false positives, i.e.,
we do not generate samples from the validation set.

3) Assessment. Finally, we decode the obtained t̂ into
images, and assess the similarity to the original t. Follow-
ing Wen et al. (2024), we use SSCD (Pizzi et al., 2022) score
to calculate the similarity, and set the threshold τ = 0.75
such that every sample with a similarity ≥ τ will be consid-
ered as memorized.

Table 4: Count of Extracted Training Samples per IAR.

Model VAR-d30 MAR-H RAR-XXL

Count 698 5 36

Results. In Figure 3 we show example memorized samples
from VAR-d30, RAR-XXL, and MAR-H. We are not able
to extract memorized images from smaller versions of these
IARs. In Table 4 we see that the extent of memorization is
severe, with VAR-d30 memorizing 698 images. We observe
lower memorization for MAR-H and RAR-XXL, which is
intuitive, as results from Sections 5.1, and 5.2 show that
VAR-d30 is the most vulnerable to MIA and DI. Surpris-
ingly, there is no memorization in token space, i.e., t ̸= t̂,
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we observe it only in the pixel space. We provide more
examples of memorized images in Appendix K.1.

Memorization Insights. Many memorized samples follow
a pattern: their backgrounds deviate from the “default” or
typical scene, as shown in Figure 8 and Appendix K.1. We
hypothesize that when a prefix contains part of this “unusual”
background, the IAR is conditioned to reproduce the spe-
cific training image that originally featured it. Additionally,
several extracted images appear as poorly executed center
crops with skewed proportions—see, for instance, the wine
bottle in Figure 7. These findings suggest memorization
is driven by distinct visual cues in the prefix and can lead
to the generation of replicas of its training data. Moreover,
the same 5 samples were extracted from both VAR-d30 and
RAR-XXL, i.e., the same 5 training images are memorized
by both models. One sample is memorized by both VAR-
d30 and MAR-H (Fig. 8 and 9),suggesting some images are
more prone to memorization across architectures.

Our results contrast with findings on DMs (Carlini et al.,
2023), where extracting training data requires far more com-
putation. The high memorization in IARs likely stems from
their size, as VAR-d30 has 2.1B parameters—more than
twice the number of parameters in DMs investigated in prior
work. Importantly, our results also show a link between IAR
size and memorization, with bigger IARs memorizing more.
Scaling laws suggest that as IARs grow larger, their perfor-
mance improves, but so does their tendency to memorize,
making privacy risks more severe in high-capacity models.

6. Mitigation Strategies
Our privacy assessment methods rely on precise outputs
from IARs to be effective. We exploit this insight to design
defenses that mitigate privacy risks by perturbing model
outputs, e.g., with random noise. For VAR and RAR, we
noise the logits, while for MAR, we add noise to contin-
uous tokens after sampling. Our preliminary evaluation
in Appendix J shows that the defenses are insufficient for
VAR and RAR, as reducing the success of privacy attacks is
achieved at the cost of substantially lower performance. In
contrast, our proposed defense helps to protect MAR even
more, with a relatively low drop in performance. However,
MAR already exhibits the lowest success rate of the privacy
attacks. This further emphasizes that leveraging diffusion
techniques is a promising direction towards strong privacy
safeguards for IARs, though further investigation is needed
to confirm its effectiveness.

7. Discussion and Conclusions
IARs are an emerging competitor to DMs, matching or sur-
passing them in image quality at a higher generation speed.
However, our comprehensive analysis demonstrates that

IARs empirically exhibit significantly higher privacy risks
than DMs, given the current state of privacy attacks against
the respective model types. Concretely, we develop novel
MIA for IARs that leverages components of the strongest
MIAs from LLMs and DMs to reach an extremely high
86.38% TPR@FPR=1%, as opposed to merely 6.38% for
the strongest DM-specific MIAs in respective DMs. Our DI
method further confirms the high privacy leakage from IARs
by showing that only 6 samples are required to detect dataset
membership, compared to at least 200 for reference DMs of
comparable image generation utility. We also create a new
data extraction attack for IARs that reconstructs even up to
698 training images from VAR-d30, while previous work
showed only 50 images extracted from DMs. Our results
indicate the fundamental privacy-utility trade-off for IARs,
where their higher performance comes at the cost of more
severe privacy leakage. We explore preliminary mitigation
strategies inspired primarily by diffusion-based approaches,
however, the initial results indicate that dedicated privacy-
preserving techniques are necessary. Our findings highlight
the need for stronger safeguards in the deployment of IARs,
especially in sensitive applications.

Impact Statement
Image autoregressive models (IARs) have rapidly gained
popularity for their strong image generation abilities. How-
ever, the privacy risks that come associated to these ad-
vancements have remained unexplored. This work makes
a first step towards identifying and quantifying these risks.
Through our findings, we highlight that IARs empirically
experience significant leakage of private data. These find-
ings are relevant to raise awareness of the community and
to steer efforts towards designing dedicated defenses. This
enables a more ethical deployment of these models.
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A. Why IARs (seem to) leak more privacy than DMs?
In the following we provide insights explaining the higher leakage observed in IARs. First, we focus on differences in
architectures and models’ internals. Then, we switch to explore architecture-agnostic factors like model size.

A.1. Inherent differences between IARs and DMs

We note that DMs have inherently different characteristics than IARs, and we link them to the privacy risks they exhibit. We
identify three key factors:

1. Access to p(x) boosts MIA (Zarifzadeh et al., 2024). We note that IARs inherently expose the full information about
p(x) at the output (per-token logits, see Equation (1)). In contrast, DMs do not, as they learn to transform N (0, I) to the
data distribution q(x) by iterative denoising process. This difference is expressed with varying MIA designs for DMs and
IARs—the former exploit the predicted noise, while the latter work with p(x), by focusing on the logits. Our results
confirm this premise—MAR is less prone to all privacy risks, and it does not output p(x). It outputs continuous tokens,
sampled from a diffusion module.

2. AutoRegressive training exposes IARs to more data per update. For each training sample passed through the IAR,
the model ”sees” N different sequences to predict. Conversely, DMs only ”sees” a single, noisy image. This influences
two factors: a) training time of the model—DMs require to be trained two times longer than IARs, on average. b) privacy
leakage—IARs are exposed to more information per each update step, which translates to increased vulnerability for
privacy attacks like MIAs, DI, and data extraction. VAR outputs 10 sequences of tokens, and is less prone to MIA than
RAR, which outputs 256 sequences, e.g., VAR-d-20 vs. RAR-L (models of similar sizes).

3. Multiple independent signals amplify leakage. Previous works (Maini et al., 2024; Dubiński et al., 2025) aggregate
signal from many MIAs to yield a stronger attack. Notably, each token predicted by IARs leaks unique information from
the model, as it is generated from a (slightly) different prefix. Thus, per-token losses/logits that IAR-specific MIAs use,
when aggregated, add up to a more informative signal, which in turn yields stronger MIAs. In contrast, DMs’ outputs
provide a general direction for the denoising process, and are strongly correlated. In effect, predictions at different
timesteps do not provide enough novel information to the MIA to boost its strength.

We believe that these reasons are behind greater privacy leakage that we observe for IARs than for DMs.

A.2. Architecture-agnostic differences between the models

The models evaluated in our work differ in many factors. Two of them, model size and training duration, are mostly
architecture-agnostic, which means they are less related to the design choices of the specific models. As the efficacy of
privacy attacks is directly related to these factors (Shokri et al., 2017), we want to assess if our results really show that IARs
leak more than DMs. To this end, we collect five variables: TPR@FPR=1% (MIA), P (DI metric), model size, training
duration, and Is IAR for every model we evaluate in the paper (11 IARs, 8 DMs). For the first two (MIA, DI) we take them
directly from Tables 1, 3 and 18. We obtain the model sizes from Tables 8 and 10. Training duration is expressed by a
number of data points passed through the model at training, e.g., for RAR-B we have 400 epochs of ImageNet-1k train set,
which amounts to 400× 1.27M ≈ 0.5B samples seen. Is IAR factor is a 1 if the model is IAR, 0 otherwise. We take these
variables and compute pairwise Pearson’s correlation between them, using values for all the models.

In Table 5 we show correlations between factors (columns) and privacy metrics (rows). We identify the following insights:

1. Training duration is a factor that increases vulnerability for MIA and DI for DMs the most.

2. Model size influences leakage more for IARs than for DMs.

3. Is IAR factor plays the most significant role for the DI performance. It also correlates with MIA performance.

Our results show that while these two factors—model size and training duration—influence the performance of our attacks
against the models, the results strengthen our notion that IARs tend to leak more privacy than IARs due to their inherent
characteristics.
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Table 5: Correlation between different factors and privacy leakage. Our results show that while the model-agnostic
factors correlate with the performance, the fact that the model is IAR or not also correlates with the leakage.

Architecture Training Duration Model Size Is IAR

P (DI) IAR 0.24 -0.39
P (DI) DM -0.58 -0.32
P (DI) All -0.04 -0.28 -0.46

TPR@FPR=1% IAR 0.17 0.93
TPR@FPR=1% DM 0.31 0.11
TPR@FPR=1% All -0.2 0.87 0.38

B. Limitations
We acknowledge our privacy analysis of the novel IARs, and comparison to DMs suffers from two limitations. We do not
evaluate our attacks on the biggest available models (like Infinity (Han et al., 2024)) trained on massive (over 1B samples),
messy datasets. Secondly, there are many factors crucial for MIA and DI performance, which differ in values between
almost all the models. The following explains these issues in more detail.

B.1. On the infeasibility of high-scale experiments on extremely big models

We do not assess how our attacks perform when applied to models trained on datasets of the scale higher than 1M samples.
It may raise concerns about the scalability of the attacks and the insights they provide to the real-world applications.
Unfortunately, IARs trained on bigger datasets than ImageNet-1k (Infinity (Han et al., 2024), HART (Tang et al., 2024))
do not disclose fully what their training data exactly is. Because of that, we are unable to perform a sound evaluation of
the privacy attacks. We lack the ability to assess MIA’s and DI’s performance correctly, as these methods rely on two
assumptions: (1) we know a part of the training data (members), (2) we have access to non-members that are independent and
identically distributed (IID) with members. When we fail to satisfy (2) the methods would collapse to dataset detection (Das
et al., 2024). Moreover, without satisfying (1) we cannot run MIA and DI at all.

While a methodologically correct evaluation of the cutting-edge models is out of our reach, we aim to provide more insight
into text-to-images IARs, and see how much they leak. To this end, we run our attacks on VAR-CLIP (Zhang et al., 2024c),
a VAR-d16 model trained on a captioned ImageNet-1k. Our results in Table 6 show that this model leaks significantly more
data than its class-to-image counterpart of the same size. Moreover, the leakage is on a level similar to VAR-d20’s—a
model of double the size of VAR-CLIP. We argue that the increased leakage stems from the model overfitting more to the
conditioning information, which is richer for textual data than for the class labels.

Table 6: Leakage of VAR-CLIP compared to class-conditional VARs. We observe increased privacy leakage over
class-conditioned models, expressed by a stronger performance of our attacks.

Model TPR@FPR=1% P (DI)

VAR-CLIP 6.30 60
VAR-d16 2.18 200
VAR-d20 5.92 40

B.2. On the impossibility of a fully standardized experimental setup between the models

In the ideal scenario we are able to isolate only the factors inherent to the models’ architecture, and consequently, are able to
draw insights which design choices lead to what privacy risks. We would call such setup standardized, meaning that the
models are almost identical, and differ only in factors we want to explore (like architecture). However, in reality we deal
with too few models, each one being trained differently, which allows only for limited insights.

We note the models vary in the following ways:
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1. Training duration, expressed by number of data points seen during training, e.g., RAR-B sees 400× 1.27M ≈ 0.5B
samples. In DMs we evaluate the training duration varies between 0.21B to 1.79B samples seen, whereas IARs are
trained with between 0.26B and 0.51B samples.

2. Training objectives. DMs minimize Equation (3), while IARs— Equation (2). Importantly, DMs minimize the expected
error over timesteps and data, which necessitates a twice as long training duration for DMs than IARs (on average) to
achieve comparable FID.

3. Model sizes. IARs benefit from scaling laws (Kaplan et al., 2020), and that allows them to be scaled up to sizes greater
than DMs, before their performance plateaus. DMs cannot be scaled that well—the performance gains diminish faster
with the increase of size. In effect, the biggest IARs we evaluate—VAR-d30 and RAR-XXL— are on average 2-3 times
bigger than DMs. Since the size of the model impacts its vulnerability to privacy attacks, our analyses do not fully
accommodate for that factor.

4. Two stage architectures. All models incorporate an encoder-decoder network for training and inference, e.g., VQ-
VAE (Esser et al., 2020). Importantly, these encoders differ between models. VAR’s next-scale prediction paradigm
requires training of a specialized encoder that understands how to process residual token maps, used during encoding an
image to the sequence of discrete tokens. Moreover, VAR and RAR work with discrete tokens, i.e., the encoder-decoder
network additionally contains a quantizer module, which translates the continuous latent representations of the images to
a 2D integer-only maps.

Unfortunately, these factors directly prohibit a standardized comparison of the privacy risks between DMs and IARs. We
are not able to fix the training duration for all models—the generation quality of DMs would be significantly subpar than
IARs (as DMs require twice the training time of IARs), and thus the results would be unsound. We incorporate the size
of the models in Figures 1, 2 and 5, however, we acknowledge that the sizes vary between the models, and this limits our
ability to fully disentangle this factor from the privacy results.

However, we are able to fix one factor for all the models: utility. We know the models we source are trained to the maximum
of the potential each architecture allows, as we utilize models from papers that aim for exactly that—the best performance.
We compare models that are the upper boundary of what is possible within the inherent limitations and trade-offs each
architecture has to offer. We are deeply aware that privacy vs utility is a balancing act: better models tend to be less private.
Thus, our study fixes one of these parameters—utility—to be the highest possible for a given model, and under that
condition we evaluate how much it leaks. We believe our results provide strong empirical evidence that DMs constitute a
Pareto optimum when it comes to image generation—they are comparable in FID, while being significantly more private
than the novel IAR models.

C. Privacy leakage under a unified attack
We acknowledge that the field of privacy attacks against image generative models like IARs or DMs is constantly evolving.
Since our work aims to provide the current empirical insights into differences in privacy leakage between these architectures,
we use the strongest available attacks to provide an upper boundary on the privacy leakage, following literature on privacy
auditing (Nasr et al., 2023; Dwork, 2006).

However, IARs and DMs are two different classes of models. In consequence, the attacks we employ are tailored to their
inherent properties, and thus the attacks vary. This might raise concerns of the following nature: what if the field progresses
and a new, very potent attack is designed for DMs? Will our current empirical results hold, i.e., can we really claim IARs
leak more privacy than DMs, or is it just the current MIAs against DMs that are less powerful than for IARs?

We believe our insights in Appendix A provide reasons why IARs inherently leak more than DMs. To strengthen our results,
we perform an architecture-agnostic, unified attack against all models—Loss Attack (Yeom et al., 2018).

C.1. Loss Attack

Loss Attack is defined as follows: (1) For each sample we perform a forward pass through the model as it would be during
the training (2) We compute the model loss (specific to each model) for the samples. (3) We use the losses to perform MIA
(as in Appendix D.2), and we use the losses to perform Dataset Inference (see Appendix D.3).
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Table 7: Unified attack results. We employ Loss Attack (Yeom et al., 2018), discarding any model-specific modifications
that might strengthen the signal, to ensure a fair comparison between different model classes and architectures. The results
strongly support our notion that IARs leak more privacy than DMs.

Model Architecture P (Dataset Inference) TPR@FPR=1% (MIA) AUC (MIA) Accuracy (MIA)

VAR-d16 IAR 3000 1.50±0.18 52.35±0.40 50.08±0.03

VAR-d20 IAR 1000 1.67±0.20 54.54±0.40 50.11±0.03

VAR-d24 IAR 300 2.19±0.20 59.56±0.39 50.15±0.04

VAR-d30 IAR 40 4.95±0.40 75.46±0.35 50.32±0.05

MAR-B IAR 6000 1.43±0.17 51.31±0.30 50.48±0.16

MAR-L IAR 3000 1.52±0.16 52.35±0.30 50.70±0.18

MAR-H IAR 2000 1.61±0.17 53.66±0.30 51.07±0.20

RAR-B IAR 800 1.77±0.25 54.92±0.41 50.25±0.06

RAR-L IAR 400 2.10±0.27 58.03±0.40 50.39±0.07

RAR-XL IAR 80 3.40±0.40 65.58±0.38 50.81±0.10

RAR-XXL IAR 40 5.73±0.52 74.44±0.34 51.64±0.19

LDM DM > 20000 1.08±0.13 50.13±0.05 50.13±0.11

U-ViT-H/2 DM > 20000 0.85±0.13 50.11±0.09 50.07±0.18

DiT-XL/2 DM > 20000 0.84±0.14 50.09±0.05 50.15±0.14

MDTv1-XL/2 DM > 20000 0.85±0.13 50.05±0.05 50.08±0.14

MDTv2-XL/2 DM > 20000 0.87±0.12 50.14±0.05 50.16±0.14

DiMR-XL/2R DM > 20000 0.89±0.13 49.55±0.06 49.70±0.14

DiMR-G/2R DM > 20000 0.85±0.12 49.54±0.06 49.69±0.13

SiT-XL/2 DM 6000 0.95±0.16 48.22±0.26 49.97±0.09

Loss Attack differs from MIAs against DMs in the following way: instead of fixing the timestep to the most optimal
one (t = 100 (Carlini et al., 2023)), and averaging the loss over 5 different input noises (Carlini et al., 2023), we sample
t ∼ U [0, 1000], and compute the per-sample loss for a single random noise.

For MAR, we roll back the modifications to the diffusion module, explained in Appendix G. We do not fix the timestep to
the most optimal one (t = 500), we compute the loss over 5 (default for training), instead of 64 (optimal) input noises, and
we sample the masking ratio for each sample following the distribution used during training, instead of fixing it to 0.95—the
optimal value.

For VAR and RAR, this attack is identical to the one in Table 14 (first row).

Since the DI framework relies on features obtained from different MIAs, we run DI only with the single feature—Loss Attack.
We unify DI to be the same for DMs and IARs by removing the scoring function s for DM-specific DI—CDI (Dubiński
et al., 2025). In effect, the procedure is identical for DMs and IARs.

C.2. IARs are empirically more prone to the unified attack than DMs

Our results in Table 7 are consistent with the results achieved with DM- and IAR-specific attacks (Tables 1 and 3) Empirical
data shows IARs are more vulnerable to MIAs and DI. Loss Attack does not yield TPR@FPR=1% greater than random
guessing (1%) for DMs, whereas all IARs perform above random guessing. Moreover, with such a weak signal, DI ceases to
be successful for DMs, requiring above 20,000 samples (P ) to reject the null hypothesis (no significant difference between
members and non-members), with one exception: SiT. Conversely, IARs retain their high vulnerability to DI, with the most
private IAR—MAR-B—being similarly vulnerable to the least private DM—SiT.

We believe results obtained under the unified attack strengthen our message that current IARs leak more privacy than DMs.

D. Additional Background
In the following we provide additional background on Diffusion Models used for comparison to IARs, details on MIAs, and
precise definition of the DI procedure, as well as a description of the sampling strategies used by IARs during generation.
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D.1. Diffusion Models

Table 8: DM details. We report the training details for the DM models used in this work.

LDM U-ViT-H/2 DiT-XL/2 MDTv1-XL/2 MDTv2-XL/2 DiMR-XL/2R DiMR-G/2R SiT-XL/2

Model parameters 395M 501M 675M 700M 742M 505M 1056M 675M
Training steps 178k 500k 400k 2M 6.5M 1M 1M 7M

Batch size 1200 1024 256 256 256 1024 1024 256
FID 3.60 2.29 2.27 1.79 1.58 1.70 1.63 2.06

We provide a brief overview of DMs used in our experiments. All models are class-conditioned latent DMs trained on the
ImageNet dataset at 256×256 resolution. Except for LDM, all models utilize Vision Transformers (ViT) (Dosovitskiy et al.,
2021) as their diffusion backbones. LDM instead employs the UNet architecture (Ronneberger et al., 2015), being a prior
work. We refer the reader to the original publications for more details about their architectures and training strategies.

LDM (Latent Diffusion Model) by Rombach et al. (2022) first propose running diffusion in a learned latent space rather than
in pixel space, using a U-Net as the denoising backbone.

DiT-XL/2 (Diffusion Transformer) by Peebles & Xie (2022) replaces the conventional U-Net with a ViT backbone.

U-ViT-H/2 by Bao et al. (2023) adopts a ViT-based architecture with skip connections inspired by U-Nets. It treats image
patches, class labels, and diffusion timesteps as input tokens in a unified transformer space.

MDTv1-XL and MDTv2-XL (Masked Diffusion Transformer) by Gao et al. (2023) apply a masked latent modeling strategy
during training to enhance contextual learning. The model predicts missing latent tokens, improving training efficiency and
sample quality. MDTv2 introduces architectural refinements that lead to further gains in fidelity and performance.

DiMR-XL/2R and DiMR-G/2R by Liu et al. (2024) propose a multi-resolution diffusion framework that processes features
across different spatial scales. This design improves detail preservation and reduces distortions, especially when using large
patch sizes. The models also incorporate time-aware normalization to enhance temporal conditioning.

SiT-XL/2 (Scalable Interpolant Transformer) by Ma et al. (2024) extends the DiT architecture with an interpolant mechanism
that decouples the noise schedule from the model. This allows for greater flexibility in diffusion dynamics without
architectural changes.

Besides these models, we additionally evaluate emerging DMs: LFM (Dao et al., 2023)—a flow-matching model, and
DiT-MoE (Fei et al., 2024)—a mixture-of-experts DM, based on DiT (Peebles & Xie, 2022). We do not include these
models for the final comparison for three reasons: (1) the released models are significantly smaller (130M parameters each)
than all other models, (2) the released models achieve subpar FID scores (4.46 for LFM, unknown FID for DiT-MoE), (3)
unknown details of training (number of iterations for DiT-MoE). For completeness, we perform MIA and DI, and report the
values in Table 9.

Table 9: Results for novel DM architectures. We see the leakage is similar to the rest of DMs.

Model TPR@FPR=1% P (DI)

LFM 1.79 2000
DiT-MoE 1.70 2000

D.2. Membership Inference Attacks

MIAs attempt to identify whether a given input x, drawn from distribution X , was part of the training dataset Dtrain used
to train a target model fθ. We explore several MIA strategies under a gray-box setting, where the adversary has access to
the model’s loss but no information about its internal parameters or gradients. The goal is to construct an attack function
Afθ : X → {0, 1} that predicts membership.

Threshold-Based attack. Threshold-based attack is a key method of establishing membership status of a sample. It relies
on a metric such as Loss (Yeom et al., 2018) to determine membership. An input x is classified as a member if value of the
metric falls below a predefined threshold:

Afθ (x) = 1[M(fθ, x) < γ], (4)
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where M is the metric function, and γ is the threshold.

MIN-K% PROB Metric. To address the limitations of predictability in threshold-based attacks, Shi et al. (2024) introduced
the MIN-K% PROB metric. This approach evaluates the least probable K% of tokens in the input x, conditioned on
preceding tokens, where K is a hyperparameter, selected from {10, 20, 30, 40, 50}. By focusing on less predictable tokens,
MIN-K% PROB avoids over-reliance on highly predictable parts of the sequence. Membership is determined by thresholding
the average negative log-likelihood of these low-probability tokens:

Afθ (x) = 1[MIN-K% PROB(x) < γ].

The final value is reported for the best K.

MIN-K% PROB ++. MIN-K% PROB ++ refines the MIN-K% PROB method by leveraging the insight that training samples
tend to be local maxima in the modeled probability distribution. Instead of simply thresholding token probabilities, MIN-K%
PROB ++ examines whether a token forms a mode or has relatively high probability compared to other tokens in the
vocabulary.

Given an input sequence x = (x1, x2, . . . , xT ) and an autoregressive language model fθ, the MIN-K% PROB ++ score is
computed as:

SMin-K%++(x) =
1

|S|
∑
t∈S

log p(xt|x<t)− µx<t

σx<t
, (5)

where S consists of the least probable K% tokens in x, and µx<t and σx<t are the mean and standard deviation of log
probabilities across the vocabulary. Membership is determined by thresholding:

Afθ (x) = 1[SMin-K%++(x) ≥ γ]. (6)

Similarly to MIN-K% PROB, MIN-K% PROB ++ sweeps over K ∈ {10, 20, 30, 40, 50}, and the final result is reported for
the best hyperparameter K.

zlib Ratio Attacks. A simple baseline attack leverages the compression ratio computed using the zlib library (Gailly & Adler,
2004). This method compares the model’s perplexity with the sequence’s entropy, as determined by its zlib-compressed size.
The attack is formalized as:

Afθ (x) = 1

[
Pfθ (x)

zlib(x)
< γ

]
.

The intuition is that samples from the training set tend to have lower perplexity for the model, while the zlib compression,
being model-agnostic, does not exhibit such biases.

CAMIA introduces several context-aware signals to enhance membership inference accuracy. The slope signal captures
how quickly the per-token loss decreases over time, as members typically exhibit a steeper decline. Approximate entropy
quantifies the regularity of the loss sequence by measuring the frequency of repeating patterns, while Lempel-Ziv complexity
captures the diversity of loss fluctuations by counting unique substrings in the loss trajectory—both of which tend to be
higher for non-members. The loss thresholding Count Below approach computes the fraction of tokens with losses below a
predefined threshold, exploiting the tendency of members to have more low-loss tokens. Repeated-sequence amplification
measures how much the loss decreases when an input is repeated, as non-members often show stronger loss reductions due
to in-context learning.

Surprising Tokens Attack (SURP). SURP detects membership by identifying surprising tokens, which are tokens where
the model is highly confident in its prediction but assigns a low probability to the actual ground truth token. Seen data tends
to be less surprising, meaning the model assigns higher probabilities to these tokens in familiar contexts.

For a given input x = (x1, x2, . . . , xT ), surprising tokens are those where the Shannon entropy is low and the probability of
the ground truth token is below a threshold:

S = {t | Ht < ϵe, p(xt|x<t) < τk}, (7)

where Ht is the entropy of the model’s output at position t, τk is the probability of the bottom k%-th token. k ∈
{10, 20, 30, 40, 50}, and ϵe ∈ {2, 4, 8, 16} are hyperparameters. The SURP score is the average probability assigned to
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these surprising tokens:

SSURP(x) =
1

|S|
∑
t∈S

p(xt|x<t). (8)

Membership is determined by thresholding:

Afθ (x) = 1[SSURP(x) ≥ γ]. (9)

The SUPR’s result for the best combination of k and ϵe is selected as the final performance.

D.3. Dataset Inference

Perform statistical testPrepare data
and model    Extract features Obtain scores

`

Statistical TestingFeature Extractor

IAR
Model decision

scoresfeaturessamples

P

U

Figure 4: Dataset Inference for IARs Procedural Steps. The process consists of four main steps: 1 Data Preparation:
Prepare the data to verify whether the (suspected) member samples P were used to train the IAR. The (confirmed) nonmember
samples U, from the same distribution as P, serve as the validation set. 2 Feature Extraction: Run each individual MIA
on all inputs from {P,U} to extract membership features for all data samples. We use our MIAs tailored to IAR models.
3 Score Computation: Normalize the extracted features using MinMaxScaler to scale them into the [0,1] range and

compute a membership score for each sample by summing its normalized feature values. 4 Statistical Testing: Apply a
statistical t-test to verify whether the scores obtained for the public suspect data points P are statistically significantly higher
than those for U. If so, P is marked as being part of the IAR’s training set. Otherwise, the test is inconclusive and the IAR’s
training set is considered independent of P.

Scaling IARs to larger datasets raises concerns about the unauthorized use of proprietary or copyrighted data for training.
With the growing adoption and increasing scale of IARs, this issue is becoming more pressing. In our work, we use DI
to quantify the privacy leakage in IAR models. However, DI can be additionaly used to establish a dispute-resolution
framework for resolving illicit use of data collections in model training, ie. determine if a specific dataset was used to train
a IAR.

The framework involves three key roles. First, the victim (V) is the content creator who suspects that their proprietary or
copyrighted data was used to train a IAR without permission. The victim provides a subset of samples (P) they believe may
have been included in the model’s training dataset. Second, the suspect (A) refers to the IAR provider accused of using
the victim’s dataset during training. The suspect model (fθ) is examined to determine whether it demonstrates evidence of
having been trained on P . Finally, the arbiter acts as a trusted third party, such as a regulatory body or law enforcement
agency, tasked with conducting the dataset inference procedure. For instance, consider an artist whose publicly accessible
but copyrighted artworks have been used without consent to train a IAR. The artist, acting as the victim (V), provides a
small subset of suspected training samples (P). The IAR provider (A) denies any infringement. An arbiter intervenes and
obtains gray-box or white-box access to the suspect model. Using DI methodology, the arbiter determines whether the IAR
demonstrates statistical evidence of training on P .

D.4. Sampling Strategies

The greedy approach selects the token with the highest probability. In the top-k sampling, the highest k token probabilities
are retained, while all others are set to zero. The remaining non-zero probabilities are then re-normalized and used to
determine the next token. Notably, when k = 1, this method reduces to greedy sampling.
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E. Model Details
In our experiments, we use a range of models from VAR (Tian et al., 2024), RAR(Yu et al., 2024), and MAR (Li et al., 2024)
architectures, each varying in model size and architecture. The details of these models, including the number of parameters,
training epochs, and FID scores, are summarized in Table 10. The models were trained on the class-conditioned image
generation on the ImageNet dataset (Deng et al., 2009).

Table 10: Model details. We report the training details for IAR the models used in this work.

VAR Models RAR Models MAR Models

VAR-d16 VAR-d20 VAR-d24 VAR-d30 RAR-B RAR-L RAR-XL RAR-XXL MAR-B MAR-L MAR-H

Model parameters 310M 600M 1.0B 2.1B 261M 462M 955M 1.5B 208M 478M 942M
Training epochs 200 250 300 350 400 400 400 400 400 400 400
FID 3.55 2.95 2.33 1.92 1.95 1.70 1.50 1.48 2.31 1.78 1.55

F. Training and Inference Cost Estimation
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Figure 5: Comprehensive comparison of the trade-offs between IARs and DMs.

Here we describe the comprehensive process of training and generation cost estimation of IARs and DMs, which results in
the plot Figure 5. We use torchprofile (tor, 2021) Python library to measure GFLOPs used for generation and training.

In order to compute the training cost, the procedure is as follows. (1) We perform a single forward pass through the model.
(2) We multiply the obtained GFLOPs cost by two, to accommodate for the backward pass cost. (3) We multiply the resulting
cost of a single forward and backward pass by the amount of training samples passed through the model during training.
The amount of samples is based on the numbers reported in the papers for each of the evaluated models. DMs and IARs use
a different reporting methodology, with the former reporting training steps and a batch size, and the latter reporting the
number of epochs. For the latter, we assume that a full pass through the ImageNet-1k training set is performed, thus we
multiply the number of epochs by 1, 281, 167.

Time to generate a single sample (referred to as latency) is computed by generating 640 images using code from the original
models’ repositories. We use the maximum batch size that fits on a single NVIDIA RTX A4000 48GB GPU, to utilize our
hardware to the maximum, in order to ensure a fair comparison. For DMs and IARs we follow the settings reported by
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authors of the respective papers that give the lowest FID score, i.e., we use classifier-free guidance for all the models. For
MAR we perform 64 steps of patches sampling. For all DMs but U-ViT we perform 250 steps of denoising, while for U-ViT
the reported number is 50, which explains low latency of this model in comparison to others. We acknowledge that, in case
of DMs, there are ways to lower the cost of the inference, e.g., by lowering the number of denoising steps. However, we use
the default, yet more costly setup for these models, as there is an inherent trade-off between generation quality and cost for
DMs, which we want to avoid to make our results sound.

Single generation cost in GFLOPs is computed in a similar fashion. We utilize code provided by the authors of the respective
papers for the inference, wrap it using torchprofile, and perform a generation of a single sample. Note that here we do
not measure time, and we can ignore the parallelism of hardware, as the total cost would stay the same. As we observe
in Figure 1, there is a discrepancy between latency and cost of generation, especially in case of RAR, where we observe an
order of magnitude higher generation time than the GFLOPs cost would suggest. This phenomenon originates from the
KV-Cache mechanism that is used in case of VAR and RAR during sampling. While the compute cost is lower thanks to the
mechanism, the reading operation of the cache mechanism is not effectively parallelized, which results in hardware-incurred
latency. We, however, acknowledge that this trade-off might become more beneficial in cases of low-power edge devices, as
the computational power of these devices is more limited than the speed of memory operations.

G. MIAs for MAR
Adjusting Binary Mask MAR extends the IAR framework by incorporating masked prediction strategies, where masked
tokens are predicted based on the visible ones. This design choice is inspired by Masked Autoencoders (He et al., 2022),
where selectively removing and reconstructing parts of the input allows models to learn better representations. Given that
MIAs rely on detecting subtle differences in how models process known and unknown data, we hypothesize that adjusting
the masking ratio during inference can amplify membership signals. By increasing the masking ratio from 0.86 (the training
average) to 0.95, we create conditions where fewer tokens are available to reconstruct the original image, potentially
exposing membership information more prominently.

Our experimental results, reported in Table 11, confirm that this strategy enhances MIAs’ effectiveness. Specifically,
TPR@FPR=1% for MAR-H increases from 2.18 to 2.88 (+0.70), and MAR-L sees an improvement from 1.89 to 2.25
(+0.36), demonstrating that a higher masking ratio strengthens membership signals. Notably, setting the mask ratio too
high (e.g., 0.99) leads to a slight drop in MIA performance, suggesting a balance must be struck between revealing more
membership signal and overly degrading the model’s ability to generate images effectively.

Table 11: Impact of varying mask ratio on MIAs for MAR. We report TPR@FPR=1%. Higher values indicate stronger
membership signals. The best-performing setting is highlighted in bold.

Mask Ratio MAR-B MAR-L MAR-H

0.75 1.64 (-0.05) 1.65 (-0.24) 1.81 (-0.37)
0.80 1.74 (+0.05) 1.76 (-0.13) 1.85 (-0.33)
0.85 1.68 (-0.01) 1.83 (-0.06) 2.00 (-0.18)
0.86 (default) 1.69 (0.00) 1.89 (0.00) 2.18 (0.00)
0.90 1.65 (-0.04) 1.88 (-0.01) 2.22 (+0.05)
0.95 1.88 (+0.19) 2.25 (+0.36) 2.88 (+0.70)
0.99 1.77 (+0.08) 1.86 (-0.03) 2.14 (-0.04)

Fixed Timestep MIAs on DMs have been shown to be most effective when conducted at a specific denoising step t (Carlini
et al., 2023). Since MAR utilizes a small diffusion module for token generation, we hypothesize that targeting MIAs at a
fixed timestep t rather than a randomly chosen one can similarly enhance MIA effectiveness. Unlike full-scale diffusion
models, where the most discriminative timestep is typically around t = 100, our experiments reveal that for MAR models,
the optimal timestep is t = 500.

Table 12 illustrates the impact of this adjustment. When MIAs are performed at t = 500, MAR-H achieves a TPR@FPR=1%
of 3.30, improving by +0.42 over the baseline random timestep approach. Similarly, MAR-L and MAR-B also see noticeable
gains at this timestep. Notably, selecting timestep t = 100 significantly reduces the attack’s effectiveness, with a drop of
-0.38 for MAR-H.

22



Privacy Attacks on Image AutoRegressive Models

Table 12: Impact of using a fixed denoising timestep on MIAs for MAR performance. We report TPR@FPR=1%. The
most discriminative timestep is highlighted in bold.

Timestep MAR-B MAR-L MAR-H

random 1.88 (0.00) 2.25 (0.00) 2.88 (0.00)
100 1.60 (-0.27) 1.90 (-0.34) 2.50 (-0.38)
500 1.88 (+0.00) 2.41 (+0.17) 3.30 (+0.42)
700 1.85 (-0.03) 2.35 (+0.10) 3.20 (+0.32)
900 1.65 (-0.22) 2.14 (-0.10) 2.97 (+0.09)

Reducing Diffusion Noise Variance The MAR loss function, as defined in Equation (3), exhibits certain variance due
to its dependence on randomly sampled noise ϵ. During training, MAR uses four different noise samples per image. We
hypothesize that increasing the number of noise samples can provide a more stable loss signal, thereby improving the
performance of MIAs.

Our results, summarized in Table 13, confirm that increasing the number of noise samples has a positive effect on attack
performance.

Table 13: Impact of R reducing diffusion noise variance on MIAs for MAR performance. We report TPR@FPR=1%.
Obtaining loss for random noise sampled multiple times generally improves attack effectiveness. The best-performing
setting is highlighted in bold.

Repeats MAR-B MAR-L MAR-H

4 (default) 1.88 (0.00) 2.41 (0.00) 3.30 (0.00)
8 1.98 (+0.10) 2.59 (+0.18) 3.32 (+0.03)
16 2.01 (+0.13) 2.50 (+0.09) 3.19 (-0.11)
32 2.00 (+0.11) 2.56 (+0.15) 3.35 (+0.06)
64 2.09 (+0.21) 2.61 (+0.20) 3.40 (+0.10)

H. Full MIA Results
We report TPR@FPR=1% and AUC for each baseline MIA (Table 14, Table 15, each improved MIA for IAR (Table 16,
Table 17) and each MIA for DMs (Table 18, Table 19). Results are randomized over 100 experiments.

Table 14: TPR@FPR=1% for baseline MIAs.

Model VAR-d16 VAR-d20 VAR-d24 VAR-d30 MAR-B MAR-L MAR-H RAR-B RAR-L RAR-XL RAR-XXL

Loss (Yeom et al., 2018) 1.50±0.16 1.67±0.20 2.19±0.21 4.95±0.38 1.42±0.21 1.48±0.19 1.60±0.21 1.76±0.24 2.10±0.27 3.38±0.42 5.70±0.55
Zlib (Carlini et al., 2021) 1.55±0.20 1.74±0.20 2.24±0.24 5.77±0.59 1.41±0.22 1.49±0.21 1.59±0.22 1.91±0.23 2.45±0.26 4.21±0.31 7.52±0.57

Hinge (Bertran et al., 2024) 1.62±0.19 1.72±0.22 2.14±0.23 4.09±0.40 — — — 1.81±0.17 1.99±0.19 2.94±0.36 5.16±0.63
Min-K% (Shi et al., 2024) 1.58±0.16 2.04±0.25 3.22±0.38 12.23±1.13 1.69±0.18 1.89±0.16 2.18±0.23 2.09±0.24 2.86±0.32 5.83±0.52 13.48±0.98

SURP (Zhang & Wu, 2024) 1.53±0.17 1.70±0.20 2.23±0.23 5.02±0.43 — — — 1.84±0.18 2.12±0.30 3.46±0.46 5.82±0.53
Min-K%++ (Zhang et al., 2024b) 1.34±0.18 2.21±0.28 3.73±0.34 14.90±0.96 — — — 2.36±0.29 3.26±0.30 6.27±0.65 14.63±0.87

CAMIA (Chang et al., 2024) 1.33±0.18 1.76±0.19 3.07±0.35 16.69±1.16 1.35±0.19 1.38±0.19 1.44±0.23 1.51±0.17 1.78±0.15 1.99±0.34 4.34±0.51

Table 15: AUC for baseline MIAs.

Model VAR-d16 VAR-d20 VAR-d24 VAR-d30 MAR-B MAR-L MAR-H RAR-B RAR-L RAR-XL RAR-XXL

Loss (Yeom et al., 2018) 52.35±0.35 54.53±0.34 59.55±0.35 75.45±0.30 51.92±0.36 53.33±0.36 55.06±0.34 54.92±0.37 58.04±0.37 65.59±0.34 74.45±0.30
Zlib (Carlini et al., 2021) 52.38±0.38 54.59±0.38 59.65±0.37 75.67±0.34 51.91±0.39 53.32±0.39 55.05±0.38 55.27±0.36 58.68±0.35 66.85±0.34 76.17±0.30

Hinge (Bertran et al., 2024) 53.29±0.39 56.83±0.39 62.89±0.39 77.36±0.33 — — — 57.07±0.44 61.41±0.44 71.48±0.39 82.14±0.29
Min-K% (Shi et al., 2024) 53.77±0.40 57.84±0.44 65.49±0.40 83.55±0.30 51.87±0.38 53.29±0.38 55.05±0.38 56.53±0.38 61.21±0.36 71.35±0.32 82.33±0.28

SURP (Zhang & Wu, 2024) 50.46±0.25 54.54±0.38 59.60±0.40 75.46±0.34 — — — 52.21±0.40 58.02±0.42 65.58±0.41 74.50±0.33
Min-K%++ (Zhang et al., 2024b) 54.52±0.41 57.93±0.38 65.76±0.38 85.33±0.27 — — — 57.82±0.41 62.48±0.38 75.61±0.32 85.16±0.26

CAMIA (Chang et al., 2024) 52.44±0.44 55.12±0.44 61.37±0.42 80.16±0.34 51.08±0.42 51.96±0.43 53.20±0.38 51.40±0.36 51.83±0.39 59.28±0.39 66.07±0.36
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Table 16: TPR@FPR=1% for our improved MIAs for IARs.

Model VAR-d16 VAR-d20 VAR-d24 VAR-d30 MAR-B MAR-L MAR-H RAR-B RAR-L RAR-XL RAR-XXL

Loss (Yeom et al., 2018) 2.16±0.26 5.95±0.54 24.03±1.91 86.38±0.92 1.54±0.22 1.81±0.21 2.26±0.26 2.86±0.20 5.50±0.39 16.58±0.97 40.76±1.87
Zlib (Carlini et al., 2021) 1.75±0.17 4.87±0.41 20.37±1.19 83.99±0.87 1.51±0.21 1.80±0.23 2.23±0.27 2.52±0.31 4.56±0.39 13.91±1.02 41.03±1.96

Hinge (Bertran et al., 2024) 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 — — — 2.50±0.20 4.34±0.39 10.59±0.88 20.23±1.85
Min-K% (Shi et al., 2024) 0.05±0.02 0.06±0.02 0.14±0.04 1.63±0.13 2.09±0.23 2.6±0.28 3.40±0.30 4.30±0.33 8.66±0.79 26.14±1.22 49.80±2.15

Min-K%++ (Zhang et al., 2024b) 0.39±0.06 1.40±0.11 4.88±0.20 37.90±0.44 — — — 4.19±0.40 8.24±0.66 23.04±1.14 43.67±2.32
CAMIA (Chang et al., 2024) 1.83±0.25 5.46±0.52 20.92±1.14 72.77±1.04 1.00±0.17 0.97±0.13 1.06±0.15 1.63±0.21 2.60±0.27 6.77±0.47 17.85±1.20

Table 17: AUC for our improved MIAs for IARs.

Model VAR-d16 VAR-d20 VAR-d24 VAR-d30 MAR-B MAR-L MAR-H RAR-B RAR-L RAR-XL RAR-XXL

Loss (Yeom et al., 2018) 61.73±0.33 76.26±0.30 92.20±0.15 98.95±0.05 52.25±0.42 54.60±0.41 57.35±0.40 65.61±0.35 75.83±0.32 89.64±0.21 96.17±0.12
Zlib (Carlini et al., 2021) 57.91±0.39 70.86±0.33 88.69±0.24 98.51±0.07 52.23±0.39 54.57±0.39 57.33±0.39 62.22±0.42 72.19±0.37 87.51±0.22 95.46±0.13

Hinge (Bertran et al., 2024) 52.67±0.36 56.11±0.36 62.48±0.36 74.63±0.30 — — — 59.66±0.39 68.09±0.35 81.56±0.29 90.62±0.21
Min-K% (Shi et al., 2024) 59.78±0.34 70.43±0.34 83.10±0.25 90.16±0.27 53.31±0.40 56.34±0.39 59.98±0.38 66.81±0.38 78.73±0.32 91.36±0.20 96.97±0.10

Min-K%++ (Zhang et al., 2024b) 57.10±0.30 65.44±0.29 78.74±0.25 93.18±0.16 — — — 65.20±0.36 75.37±0.34 88.29±0.23 95.84±0.14
CAMIA (Chang et al., 2024) 56.37±0.38 68.18±0.31 84.83±0.24 96.95±0.09 50.86±0.41 51.15±0.41 51.75±0.41 57.95±0.40 63.17±0.43 70.43±0.39 83.55±0.31

Table 18: TPR@FPR=1% of MIAs for DMs.

LDM U-ViT-H/2 DiT-XL/2 MDTv1-XL/2 MDTv2-XL/2 DiMR-XL/2R DiMR-G/2R SiT-XL/2

Denoising Loss (Carlini et al., 2023) 1.35±0.14 1.30±0.17 1.42±0.17 1.55±0.18 1.64±0.17 0.91±0.15 0.88±0.15 1.02±0.13
SecMIstat (Duan et al., 2023c) 1.30±0.20 1.31±0.19 1.49±0.22 1.35±0.17 1.52±0.22 1.15±0.21 1.05±0.15 0.00±0.00

PIA (Kong et al., 2023) 1.25±0.16 1.25±0.19 1.59±0.20 1.72±0.20 2.07±0.24 1.07±0.11 1.09±0.12 1.14±0.14
PIAN (Kong et al., 2023) 1.03±0.14 1.17±0.16 0.92±0.12 1.22±0.15 1.50±0.20 1.04±0.13 1.01±0.12 1.09±0.14

GM (Dubiński et al., 2025) 1.25±0.17 1.26±0.17 1.34±0.17 1.18±0.16 1.47±0.19 1.13±0.15 1.16±0.16 1.38±0.18
ML (Dubiński et al., 2025) 1.41±0.16 1.36±0.20 1.50±0.18 1.70±0.16 1.98±0.26 1.01±0.15 1.10±0.14 1.14±0.12

CLiD (Zhai et al., 2024) 1.55±0.19 1.75±0.22 2.08±0.28 2.72±0.39 4.91±0.44 0.96±0.14 0.90±0.13 6.38±0.64

Table 19: AUC for MIAs for DMs.

LDM U-ViT-H/2 DiT-XL/2 MDTv1-XL/2 MDTv2-XL/2 DiMR-XL/2R DiMR-G/2R SiT-XL/2

Denoising Loss (Carlini et al., 2023) 50.53±0.41 50.36±0.42 51.77±0.43 51.25±0.37 51.65±0.37 46.25±0.40 46.01±0.40 47.25±0.34
SecMIstat (Duan et al., 2023c) 49.84±0.44 53.15±0.43 55.15±0.46 54.44±0.38 56.80±0.36 48.73±0.45 48.73±0.44 50.00±0.00

PIA (Kong et al., 2023) 48.97±0.43 51.77±0.44 53.18±0.42 52.60±0.44 54.68±0.45 47.31±0.42 47.16±0.41 49.13±0.44
PIAN (Kong et al., 2023) 49.56±0.43 50.99±0.46 50.14±0.43 49.96±0.42 51.52±0.38 49.85±0.41 49.79±0.43 50.17±0.37

GM (Dubiński et al., 2025) 51.51±0.40 51.19±0.42 50.46±0.46 50.72±0.39 48.85±0.37 45.97±0.45 45.86±0.45 50.94±0.38
ML (Dubiński et al., 2025) 50.36±0.41 51.16±0.41 52.53±0.45 50.42±0.19 54.65±0.38 46.26±0.38 49.37±0.41 49.83±0.17

CLiD (Zhai et al., 2024) 52.50±0.39 54.27±0.41 56.16±0.41 57.43±0.41 62.54±0.40 46.20±0.38 45.95±0.41 78.65±0.30

I. Full DI Results
We report the outcome of DI for DMs in Table 20. As an additional observation, we note that contrary to DI for IARs,
shifting from the classifier to an alternative feature aggregation increases the number of samples needed to reject H0. This
suggests, that the linear classifier remains necessary for DMs.

Table 20: DI for DMs. We report the minimal number of samples needed to successfully reject H0.

LDM U-ViT-H/2 DiT-XL/2 MDTv1-XL/2 MDTv2-XL/2 DiMR-XL/2R DiMR-G/2R SiT-XL/2

DI for DM 4000 700 400 300 200 2000 200 300

No Classifier 5000 4000 3000 600 400 2000 2000 500
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J. Mitigation Strategy
In this section we detail our privacy risk mitigation strategy.
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Figure 6: Privacy-utility trade-off of our mitigation strategy. We show that successfully defending VAR and RAR against
MIA and DI requires adding noise that severely harms the performance. Interestingly, we are able to limit the extent of
memorization for VAR, and fully defend MAR against MIA and DI.

J.1. Method

Given an input sample x, we perturb the output of the IAR according to a noise scale σ, which we can adjust to balance
privacy-utility trade-off. During inference, we add noise sampled from N (0, σ) to the output. For VAR and RAR, we add it
to the logits, and for MAR we add them to the sampled continuous tokens.

We measure privacy leakage with our methods from Section 5. Specifically, we perform MIAs, DI, and the extraction attack.
To quantify utility, we generate 10,000 images from the IARs, and compute FID (Heusel et al., 2017) between generations
and the validation set. Lower FID means better quality of the generations.

J.2. Results

Our results in Figure 6 show that we can effectively lower the privacy loss by applying our mitigation strategy, however, this
comes at a cost of significantly decreased utility, as highlighted by substantially increasing FID score.

We are able to lower the MIAs success by more than half (Fig. 6, left), with the biggest relative drop observed for RAR-XL,
for which the TPR@FPR=1% drops from 26% to 4.4%. Moreover, all MAR models become immune to MIAs after noising
their tokens, as TPR@FPR=1% drops to 1% (random guessing) with σ = 0.001. When we apply our defense to DI (Fig. 6,
second from the left), we have to increase P , the minimum number required to perform a successful DI attack, by an order
of magnitude, with the biggest relative difference for the smallest models: VAR-16, and RAR-B, with an increase from 80 to
3000, and 200 to 8000, respectively. Such an increase means that the models are harder to attack with DI, i.e., their privacy
protection is boosted. Similarly to MIA, DI stops working for MAR models immediately.

Our method achieves limited success in mitigating extraction (Fig. 6, third from the left). We are lowering the success
of extraction attack only when adding significant amount of noise. However, for VAR-d30, which exhibits the biggest
memorization, with σ = 1.0 we successfully protect 93 out of 698 samples from being extracted without significantly
harming the utility. Our method, similarly to all defenses, suffers from lowered performance (Fig. 6, right), as signal-to-noise
ratio during generation gets worse when σ increases.

J.3. Discussion

We show that we can mitigate privacy risks by adding noise to the outputs of IARs, at a cost of utility. Notably, all
MARs become fully immune to MIAs and DI with noise scale as small as 0.001. This result supports previous insights
from Section 5, in which we show that MARs are significantly less prone to privacy risks than VARs and RARs. We argue
that logits leak significantly more information than continuous tokens, and thus, adding noise to the latter yields significantly
higher protection, at a lower performance cost.

We acknowledge that our privacy leakage defense is a heuristic, and more theoretically sound approaches should be explored,
e.g., in the domain of Differential Privacy (Dwork, 2006). To the best of our knowledge, we make the first step towards
private IARs.
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K. More About Memorization
In this section we provide an extended analysis of memorization phenomenon in IARs. We show more examples of
memorized images, highlight the relation between the prefix length i and the number of extracted samples, and shed more
light on our efficient extraction method, described in Section 5.3.

K.1. More Memorized Images

In Figure 12 we show a non-cherry-picked set of images memorized by IARs. In Figure 7 we show an example of an image
memorized verbatim by VAR-d30 without any prefix, i.e., only from the class label token. In Figure 8 we show an image
that has been memorized by both VAR-d30 and RAR-XXL.

Figure 7: Image extracted from VAR-d30 without prefix. (Left) memorized image, (right) generated image.

K.2. Prefix Length vs. Number of Extracted Images

We analyze the effect of the prefix length on the number of extracted samples. As our method leverages conditioning on a
part of the input sequence, in Figure 10 we show an increase of extraction success with the increase in the length of the
prefix. Notably, we start experiencing false-positives once the prefix length surpasses 30 for VAR-d30 and RAR-XXL, and
5 for MAR-H. In effect, the results in Table 4 provide an upper bound of the success of our extraction method.

Table 21: Prefix length i for our data extraction attack. We note that appending longer sequences leads to false positives, i.e.,
the IARs start to generate images from the validation set.

Model VAR-d30 MAR-H RAR-XXL

Prefix length i 30 5 30

K.3. Approximate distance vs. SSCD Score

In this section we underscore the effectiveness of our filtering approach. Figure 11 shows that the distances we design for
the candidate selection process indeed correlates with the SSCD score. By focusing only on the top-5 samples for each class
we effectively narrow our search to just 0.5% of the training set, significantly speeding up the whole process.
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Figure 8: Images extracted from both VAR-d30, and RAR-XXL.
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Figure 9: An image extracted from both VAR-d30, and MAR-H.

0 5 10 15 20 25 30
Prefix length i

0

100

200

300

400

500

600

700

N
um

be
r 

of
 m

em
or

iz
ed

 s
am

pl
es

Model
RAR-XXL
VAR-d30

Figure 10: Prefix length and the number of extracted samples. We show that with an increase of the prefix length, the
success of our extraction method increases.

Figure 11: Distance function d and the SSCD score. We show that d correlates with the final memorization score. This
result makes our candidate selection process sound, and reduces the cost of extracting memorized samples.
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Figure 12: Non-cherry-picked extracted images. Odd columns from the left correspond to the original image, even to
extracted. From left, the images are for VAR-d30, RAR-XXL, and MAR-H.
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