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Abstract

The remarkable capabilities of Large Language
Models (LLMs) can be mainly attributed to their
massive training datasets, which are often scraped
from the internet without respecting data owners’
intellectual property rights. Dataset Inference (DI)
offers a potential remedy by identifying whether
a suspect dataset was used in training, thereby
enabling data owners to verify unauthorized use.
However, existing DI methods require a private
set—known to be absent from training—that
closely matches the compromised dataset’s dis-
tribution. Such in-distribution, held-out data is
rarely available in practice, severely limiting the
applicability of DI. In this work, we address this
challenge by synthetically generating the required
held-out set. Our approach tackles two key obsta-
cles: (1) creating high-quality, diverse synthetic
data that accurately reflects the original distribu-
tion, which we achieve via a data generator trained
on a carefully designed suffix-based completion
task, and (2) bridging likelihood gaps between
real and synthetic data, which is realized through
post-hoc calibration. Extensive experiments on
diverse text datasets show that using our gener-
ated data as a held-out set enables DI to detect
the original training sets with high confidence,
while maintaining a low false positive rate. This
result empowers copyright owners to make legiti-
mate claims on data usage and demonstrates our
method’s reliability for real-world litigations. Our
code is available at https://github.com/s
printml/PostHocDatasetInference.
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1. Introduction
Large language models (LLMs) have recently achieved
remarkable success in a broad range of tasks, fueled by
the availability of massive high-quality text corpora often
scraped from the internet (Weber et al., 2024; Penedo et al.,
2024). While this practice enables LLMs to generate high-
quality text and to excel on benchmarks, it also raises seri-
ous concerns related to intellectual property rights (Reuters,
2023; Gry, 2023; Sil, 2023), data privacy (Duan et al.,
2023a;b; Hanke et al., 2024; Hayes et al., 2025), and trans-
parency (Rahman & Santacana, 2023; Wu et al., 2023). The
reliance on potentially unauthorized data creates an urgent
need for methods that allow independent authors to verify
whether a given dataset has been used to train an LLM with-
out the explicit consent of the model provider.

A promising approach to addressing these concerns is
dataset inference (DI) (Maini et al., 2021; Dziedzic et al.,
2022a;b; Maini et al., 2024; Dubiński et al., 2025; Kowal-
czuk et al., 2025), which aims to determine whether a sus-
pect dataset has contributed to a model’s training. This
puts power in the hands of data owners to monitor and exer-
cise their intellectual property rights. Despite its potential,
DI currently faces a critical bottleneck: it requires a held-
out set—a dataset known to be absent from training—that
shares the same distribution as the suspect dataset (Zhang
et al., 2024a). In practice, however, such an in-distribution
held-out set is rarely available. Data creators do not typi-
cally reserve a dedicated held-out set for legal or auditing
purposes, and any disclosed held-out data could itself be re-
purposed for future training, further complicating the verifi-
cation process. Moreover, even when a dataset owner can
provide some held-out samples, any slight distributional dis-
crepancy from the original suspect data can undermine DI
by inflating false positives (Das et al., 2024; Duan et al.,
2024; Meeus et al., 2024; Maini & Suri, 2024).

To illustrate the brittleness of using seemingly IID (Indepen-
dent and Identically Distributed) held-out data, we demon-
strate in Section 3 that even in a simple scenario—where an
LLM is fine-tuned on blog posts from a single author—there
exists a distributional shift between training data (members)
and randomly held-out blog posts from the same author.
This highlights how even subtle variations in held-out data
can undermine DI. Malicious actors may exploit this vul-
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Figure 1. Dataset Inference Procedure with Synthetic Held-Out Data. This figure presents a high-level overview of how the proposed
dataset inference (DI) process will take place in real-world use cases. (a-d) LLM providers scrape proprietary author data from the
internet, and train an LLM on it. Authors who suspect unauthorized use may approach an arbiter with a copyright claim. To resolve such a
dispute, the arbiter must perform dataset inference (g). However, this requires the presence of a held-out dataset that is IID to the suspect
set. Our Work: (e) The arbiter generates IID synthetic held-out data that mimics the author’s original data. (f) The arbiter calibrates
likelihoods between real and synthetic data to ensure fair comparison, enabling them to reliably perform dataset inference.

nerability by strategically introducing shifted held-out data,
falsely accusing model owners of copyright infringement
and further reducing the reliability of DI methods.

In this work, we address these challenges by proposing to
synthetically generate held-out data for DI, bypassing the
need for in-distribution held-out data. This vision, however,
is non-trivial to achieve. First, the generated texts must be re-
alistic, high-quality, and sufficiently diverse to approximate
the distribution of the original data. Second, the generation
process itself may introduce a distribution shift between nat-
ural and synthetic held-out data. Such a shift complicates
DI: if a difference is observed between the suspect and held-
out sets, it becomes unclear whether this difference arises
from a genuine membership signal (i.e., the target model be-
haves differently on the suspect data because it has seen it
during training) or merely from the distribution shift (i.e.,
the model behaves differently on suspect data because it is
natural data). Recent studies have extensively highlighted
this issue in the context of Membership Inference Attacks
(MIAs) (Shokri et al., 2017), where distribution shifts lead
to misleading evaluation results (Das et al., 2024; Zhang
et al., 2024a; Maini et al., 2024; Dubiński et al., 2025).

To this end, we first train a carefully designed text genera-
tor on the suspect dataset itself, on a suffix completion task
(Section 4.1). This approach produces high-quality datasets
with only a small distributional shift from the suspect texts.
However, even small shifts in distribution can undermine
DI’s reliability. To address this, we introduce a post-hoc
calibration step (Section 4.2) to ensure that the generated
held-out set can serve as a reliable reference for DI. Specifi-
cally, we disentangle the effects of distributional shifts from
the actual membership signal—a critical factor in DI. To
achieve this, we propose a dual-classifier approach: (1) A
text-only classifier, trained to distinguish natural (original)
from generated data. (2) A membership-aware classifier,

which incorporates both the textual features and DI’s stan-
dard membership indicators (e.g., perplexity, min-k proba-
bilities). The key insight is that any performance advantage
of the membership-aware classifier over the text-only clas-
sifier must arise from the presence of membership signals
rather than distributional artifacts. This difference serves
as our DI signal, allowing us to infer whether the suspect
dataset was used in the target model’s training. This cali-
bration strategy enhances DI’s robustness, reducing false
positives while maintaining high detection accuracy.

We demonstrate the effectiveness of our approach on diverse
textual datasets, ranging from single-author datasets (e.g.,
personal blog posts) to large-scale, multi-author collections
such as Wikipedia. Our results show that using synthetic
held-out data, combined with calibration, enables DI to
detect unauthorized training data use with high confidence
while keeping false positives low. This expands the practical
applicability of DI and provides a pathway for data owners
to safeguard their intellectual property in an era of LLMs.

2. Background and Related Work
2.1. Membership Inference

MIAs focus on deciding if a single data point was included
in a given model’s training dataset and often serve as fea-
tures extractors for DI. In the LLM domain, MIAs exploit
different signals to distinguish between members (training
data points) and non-members (data points not used dur-
ing training). For instance, LOSS exploits the perplexity or
loss function of the target model (Yeom et al., 2018). Shi
et al. (2024) find that the rare words in a sequence can leak
more privacy information, and select K% tokens with the
smallest probabilities for evaluation. Min-K%++ further
improves upon the Min-K% approach by introducing two
calibration factors (Zhang et al., 2024b). Zlib ratio (Carlini
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et al., 2021) uses the compression rate of z-library to nor-
malize the perplexity of the target model. Neighborhood-
based methods compare a suspect sequence with its neigh-
boring texts, which can be produced by synonym substitu-
tion (Mattern et al., 2023) or paraphrasing (Duarte et al.,
2024). Moreover, reference-based methods compare the out-
put signals on a suspect sample between the target model
and a reference model (Fu et al., 2024). Yet, many recent
works have shown that the evaluation of MIAs suffers from
a falsified experimental setup, where a distributional shift
exists between the member and non-member sets (Zhang
et al., 2024a; Maini et al., 2024; Das et al., 2024). Duan
et al. (2024) show that most MIAs only perform slightly
better than random guessing if evaluated correctly on non-
biased benchmarks. Recently, Kazmi et al. (2024) proposed
how to de-bias MIAs from this distribution shift—which we
use as a foundation for our DI calibration.

2.2. Dataset Inference

To strengthen the signal from training data further beyond
MIAs, Maini et al. (2021) introduced DI. DI aggregates the
membership signal over multiple data points, often referred
to as suspect set, to decide whether a given model was
trained on this data. More formally, given a target model
f , DI aims to detect whether f was trained on the suspect
dataset Dsus. Therefore, it needs an additional held-out
dataset Dval from the same distribution as Dsus. Given both
sets, DI extracts membership features from the data points
in Dsus and Dval, aggregates all features per given sample,
and then scores these aggregate features through a scoring
model. The scores should be lower for members than for
non-members. Then, DI performs statistical hypothesis
testing on the scores of Dsus and Dval. The null hypothesis
is that the average scores for Dsus are higher than or equal
to the scores for Dval. If the statistical test manages to reject
this null hypothesis, this is a confident indicator that the data
points from Dsus are indeed members of model f ’s training
data. Otherwise, the test is considered inconclusive.

How to extract the best membership features from the data
points varies based on the learning paradigm. For example,
the original DI for supervised classification models (Maini
et al., 2021) designs a random walk strategy to estimate
the distance between data points and the decision bound-
ary of a supervised model. For self-supervised models,
Dziedzic et al. (2022b) use Gaussian Mixture Model to esti-
mate the representational differences between the training
dataset (members) and the test data. Recent dataset infer-
ence methods for LLMs (Maini et al., 2024), Diffusion Mod-
els (Dubiński et al., 2025), and Image Autoregressive Mod-
els (Kowalczuk et al., 2025) build on existing membership
inference attacks (MIAs) tailored to each type of generative
model. These methods extract membership-related features
using the appropriate MIA and then apply a linear model to

Table 1. The distributional shift (GPT2 AUC) and DI p-value
between a suspect set that consists of non-members and held-
out blog posts. Here, p-value < 0.05 indicates DI incorrectly
suggests that the suspect set is a member set.

Sequences per Blog 5 10 15 20 25

GPT2 AUC (%) 52.0 55.2 53.2 58.2 58.6
DI p-value 0.002 <0.001 <0.001 <0.001 <0.001

True Membership ✕ ✕ ✕ ✕ ✕
Inferred Membership ✓ ✓ ✓ ✓ ✓

combine and weight the extracted features. We follow this
approach in our evaluations. LLM DI can be formalized
as follows. First, after calculating over n MIA scores with
linear regression, an aggregated MIA score is obtained by
W ·MIA(x) =

∑n
i=1 wiMIAi(x). Here, W = [w1, ..., wn]

is the weight of the linear regressor, and MIA(x) is a vec-
tor concatenating n MIA scores. We label the suspect data
as 0 and the held-out data as 1. Note that, MIA(x) is calcu-
lated based on f(x), but we omit f for simplicity. Then, a
hypothesis testing is conducted to verify if the held-out set
has higher MIA score than the suspect set statistically. The
null hypothesis can be formalized as follows.

H0 : EDval [W · MIA(xval)] ≤ EDsus [W · MIA(xsus)]. (1)

If the suspect set is part of the training set of f , the null
hypothesis is rejected.

3. Failure Cases of DI
In this section, we dive deeper into the difficulties that arise
from DI’s assumption on the availability of an additional in-
distribution held-out dataset. More precisely, we show that
this assumption is extremely hard to meet in practice, even
in the simplest setups—limiting the applicability of stan-
dard DI. Therefore, we collect blog posts written by a sin-
gle author on topics from the same domain and split them
randomly into a training and held-out set. We finetune an
LLM on the training set, perform DI (Maini et al., 2024),
and find that the method returns false positives, i.e., it ille-
gitimately claims that the model was trained on blog posts
that it actually was not trained on (see Table 1). Our analy-
sis highlights that despite the texts’ homogeneity, there is a
small distributional shift between the suspect and held-out
sets that is not even easily distinguishable by Blind Base-
lines (Das et al., 2024), which causes DI to fail. This high-
lights the need to generate synthetic held-out data to benefit
from DI in real-world copyright claims. We provide more
details below and discuss its implications.

3.1. DI on a Single Author’s Data

We consider a practical application of DI in copyright pro-
tection as detailed in Figure 1. In this scenario, an au-
thor has some published texts on the internet of which
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they believe that they were illegitimately used by an LLM
provider to train their model. The author provides these
published works to an arbitrator, as a suspect set and some
non-published blog-posts as held-out set from the same dis-
tribution, i.e., with the same style, topics, etc. Then, the ar-
bitrator performs DI to resolve the copyright claims.

To evaluate this setup in practice, we collect blog posts of
a public blogger. The blogs are split into member, non-
member, and held-out sets. To avoid any potential tempo-
ral or topic distributional shifts, we randomly shuffle all
the collected blogs before splitting. In lack of the compu-
tational capacities to train an LLM from scratch, we fine-
tune a Pythia model (Biderman et al., 2023) on the member
set. The Pythia model is trained on the Pile dataset (Gao
et al., 2020), so we only used blogs after the release date of
the Pile to ensure that none of the blogs is part of the pre-
training data. Also, we only finetune the target model on
the member set for one epoch. This is to evaluate the per-
formance of DI and our method in the most strict scenario,
as Duan et al. (2024) show that MIAs perform better with
more training epochs. Finally, we run DI. More detailed ex-
periment configurations can be found in Section 5.1.

3.2. Metrics of Distributional Gap

Before analyzing the results, we introduce the metrics we
use to quantify the distributional shift between the suspect
and held-out sets. Following the approach of Blind Base-
lines (Das et al., 2024), we formulate the measurement of
the distribution gap between two text datasets as a classifica-
tion problem. In particular, the suspect set Dsus is randomly
split into a classifier training split Dtrain

sus and a test split D test
sus .

The held-out set Dval is also split into D train
val and D test

val in the
same vein. Then, a classifier g is optimized to distinguish
the training splits Dtrain

sus and D train
val . Finally, we calculate the

area under the curve (AUC) score of the classifier on the
test splits D test

sus and D test
val , which is used to measure the dis-

tributional gap between Dsus and Dval.

The design of the classifier decides how the texts are vec-
torized and if the discrepancies between texts can be suf-
ficiently captured. Das et al. (2024) apply a bag-of-words
(BoW) classifier, which can only detect the differences in
terms of word frequency. Instead, we build a GPT2-based
classifier with two transformer blocks to also find the dif-
ferences in grammar, content, styles, etc. between two text
distributions. We train the classifier from scratch to avoid
the impact of any pre-training data. Using only two trans-
former blocks of the GPT2 architecture avoids overfitting.

3.3. False Positive of DI

The AUC scores of the GPT2-based classifier in Table 1
show that there is a non-negligible distributional shift be-
tween the non-member and the held-out sets. The intuition
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Figure 2. Probability Distribution Function (PDF) of target
model perplexities. We show the comparison between (a) the
member and held-out, and (b) the non-member and held-out sets.

behind this observation is that each blog has different con-
tent and topics, which brings different words across the non-
member and held-out documents. The gap is enlarged when
we sample more sequences from each blog post. Conse-
quently, this distributional shift in texts also lead to a shift in
the MIA score. As presented in Figure 2, the distributional
shift in perplexities exists not only between member and
held-out sets, but also between non-member and held-out
sets. This shows that the inherent distributional shift among
documents is entangled with the shift caused by member-
ship signals in the MIA score, and makes DI fail to deter-
mine membership by simply detecting any distributional
shift in the MIA score. This observation aligns with the p-
values and predictions in Table 1, where we find that even
this small distributional shift causes significant false posi-
tive rates during DI. This means that the DI falsely accuses
the LLM provider of violating the copyright of an author.
What is more is that this shortcoming of DI can be mali-
ciously exploited: authors could deliberately provide held-
out data from a different distribution than their suspect data
to mislead DI and illegitimately accuse the LLM provider.
As a solution to this problem, in the next section, we pro-
pose our approach on generating an adequate in-distribution
held-out dataset synthetically.

4. Synthesizing Held-out Data
Our approach consists of two subsequent steps. First, we
generate high-quality held-out data, then, we perform a
calibration to account for the distribution shift that such
generation can introduce.

4.1. Held-out Data Generation

We explore three approaches that leverage LLMs for gen-
erating held-out data based on provided suspect data with
minimal distribution shift.

In-context Learning. As a naı̈ve approach, we use GPT-4
models to paraphrase the suspect set with in-context learn-
ing (ICL) and evaluate the distributional shift between the
original suspect texts and the paraphrased texts. Specifically,
each prompt includes a few data points as demonstrations
(shots) and requests the model to produce paraphrases for
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Figure 3. Held-out Data Generation (Left Panel): (1) The suspect dataset is first segmented into text snippets. (2) These snippets are
shuffled and split into a generator training set and an inference set. (3) A generator model is trained on the suspect dataset using a suffix
completion task. (4) The trained generator produces synthetic held-out data that mimics the suspect set. Post-hoc Calibration (Right
Panel): (1) The suspect set and synthetic held-out set are split into training and test subsets. (2) A text classifier is trained to differentiate
real from synthetic text. A combined classifier integrates textual features with DI membership signals from the target LLM. (3) The two
classifiers are evaluated: the combined classifier should only outperform the text classifier if the suspect dataset was used for training. (4)
A statistical comparison ensures that any signal detected is due to actual membership rather than distributional shifts.

another data point in the suspect set. We test two types of
prompts: 1) Paraphrasing, where we directly prompt the
model to paraphrase a chosen data point, and 2) Text Com-
pletion, where we prompt the model to complete a trun-
cated data point. For text completion, the original suffix
is used as the suspect data, and the generated suffix as the
held-out data. Our results in Table 2 show that there is a
significant distribution shift between the original and para-
phrased samples for both types of prompts. Even a BoW
classifier obtains a significant AUC of 76.2% when distin-
guishing between the original suspect vs paraphrased text
and the GPT2 classifier can achieve 99.0% AUC. The rea-
son is that there are many words (such as ”remarkable” and
”moreover”) that appear much more frequently in the syn-
thetic text than in the human-written text. Please refer to
Appendix A for more detailed explanation of GPT-4-based
generation and examples of generated texts.

Preference Optimization. We also adapt preference opti-
mization methods (Rafailov et al., 2024; Xu et al., 2024) to
the task of held-out data generation by changing from hu-
man preference to natural text preference. A more detailed
explanation is presented in Appendix B. The AUC of the

Table 2. Distributional shifts between the suspect set and syn-
thetic held-out set. The shifts are measured by Bag-of-Word
(BoW) and GPT2 classifiers.

Generation Method BoW AUC (%) GPT2 AUC (%)

ICL Paraphrasing 76.2 99.0
ICL Text Completion 79.2 99.2

Preference Optimization 50.2 58.9
Suffix Completion 50.0 52.2

BoW classifier is similar to random guessing, which means
frequent words can be greatly reduced in generated texts by
this approach. However, the GPT2 classifier can still obtain
an AUC of 58.9%. This shows that preference optimization
still leaves distinguishable generation patterns that could be
easily captured by a transformer-based classifier, limiting
the data’s usefulness as in-distribution held-out set.

Suffix Completion. The failure of the above methods
demonstrates the difficulty of producing high-quality held-
out data with a small enough distributional gap to the sus-
pect data. To solve this problem, we design a generator train-
ing scheme that enables the generator to derive a suspect set
from the author’s provided documents, together with a held-
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out set from the same distribution as this suspect set. As
shown in Figure 3, we 1 first segment the provided docu-
ments into multiple short sequences. 2 All the sequences
are shuffled and randomly split into a generator training split
and a generator inference split. Then, 3 a low-rank adap-
tion (LoRA) generator is finetuned on the training split with
the cross-entropy loss for next-token prediction. Finally, 4
we segment each sequence in the generator inference split
into two parts, and the generator predicts a synthetic suffix
based on the prefix. Here, the original suffixes are used as
the suspect set, and the synthetic suffixes as the held-out set.
Note that, the training and inference sets are split on the shuf-
fled text sequences rather than on the documents. This is to
ensure that the text snippets from the generator training and
inference splits are from the same distribution, such that the
generator can achieve better generalization from the training
to the inference set. Furthermore, we design a suffix comple-
tion task for generator inference. In this task, both the orig-
inal suffix and the synthetic suffix share a common prefix.
This approach ensures that the synthetic text maintains the
same position within a sentence as its original counterpart,
making the two suffixes directly comparable. Another im-
portant insight is that the generator can produce suffixes of
higher quality when the sequence length is relatively short.
Therefore, we limit the length of the sequences to no longer
than 64 tokens for a smaller distributional gap. The results
in Table 2 show that our method achieves a significantly
small distributional shift, and even GPT2-based classifier
can only achieve an AUC as low as 52.2%. For examples of
our generative approach, please refer to Appendix D.2.

4.2. Post-hoc Calibration

Since the generation itself can introduce a distributional shift
(natural vs generated) data, DI might yield false positives.
This is because it would detect differences between suspect
and held-out data also when they only differ in terms of
distribution but not necessarily in membership. Therefore,
we need to identify and mitigate this distribution shift.

To do so, we rely on an important observation: the genera-
tion shift between natural and synthesized data occurs in the
textual space, while the shift caused by the potential mem-
bership of the suspect set exists in the target LLM’s output
space. This allows us to disentangle the two signals. By
relying on our GPT-based text-classifier from Section 3.2,
we can quantify the textual distribution shift caused by the
generation. We denote this classifier by ctext(x), where x is
the text input for which the classifier should decide if it is
original or generated data. Inspired by Kazmi et al. (2024),
we also define a second MIA-classifier with input signals
from both the texts and the outputs of the target model, such
that we can quantify the combined effects of generation and
the membership signal. Concretely, we train a combined
classifier ccomb(x,MIA(f(x))) with inputs from both text

x and the MIA signal MIA(x) based on the outputs of f .
Here, MIA(x) can also be a vector by concatenating multi-
ple MIA scores. We split both the suspect set and held-out
sets into training and test splits. The two classifiers are opti-
mized on the suspect train split Dtrain

sus and the held-out train
split D train

val , and evaluated on the suspect test split D test
sus and

the held-out test split D test
val . By comparing the distributional

shifts quantified by the MIA classifier and the shifts identi-
fied by the text classifier, we can separate the membership
signals from the distribution gap caused by generation.

We design a hypothesis test to statistically verify if the com-
bined classifier quantifies a larger distributional shift be-
tween the suspect and held-out data than the text classifier,
namely the difference comparison t-test. The t-test is con-
ducted on the test splits D test

sus and D test
val , but we abbreviate

them as Dsus and Dval for simplicity. During the t-test, we
first sample a suspect data point xsus ∈ Dsus and pair it
with its corresponding generated counterpart xval ∈ Dval.
Note that, xsus and xval are original and generated suffixes,
which are both continuations of a common prefix. For every
such original/held-out pair, we quantify the shift caused by
generation with the text classifier as ctext(xval)− ctext(xsus).
We also quantify the combined effects caused by genera-
tion and membership signal with the combined classifier as
ccomb(xval)− ccomb(xsus). In particular, xval and xsus are la-
beled as 1 and 0, respectively. c(x) denotes the predicted
probability of classifier c on data point x, which ranges be-
tween 0 and 1. If the membership signal is present, the
combined effects will be stronger than the generation ef-
fect alone, and the predicted probability will be slightly
more accurate for the combined classifier, i.e. ccomb(xval)−
ccomb(xsus) > ctext(xval) − ctext(xsus). To this end, we for-
malize the following null hypothesis for our t-test:

H0 : Exval∈Dval,xsus∈Dsus [ccomb(xval)− ccomb(xsus)] ≤
Exval∈Dval,xsus∈Dsus [ctext(xval)− ctext(xsus)].

(2)

The difference comparison t-test is performed multiple times
with different random seeds, and the p-values are aggregated
with Sidac correction (Šidák, 1967).

By introducing a dual-classifier approach along with a statis-
tical test, we can statistically distinguish distributional shifts
caused by actual membership signals from those caused by
generation. Further results in Section 5.4 show that this ap-
proach can prevent false positives in dataset inference effec-
tively.

4.3. Weight Constraint

In this section, we explain why and how we apply a weight
constraint when computing the importance of different MIA
scores. In the original DI, the aggregated MIA score is
compared between the held-out and the suspect sets. We
define the difference in aggregated MIA score between the
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Figure 4. Weight Constraint. The weights for the MIA and text
scores are constrained to (0,1) with Sigmoid function.

two sets ydiff as follows:

ydiff = E[

n∑
i=1

wiMIAi(xval)]− E[
n∑

i=1

wiMIAi(xsus)]

=

n∑
i=1

wi(E[MIAi(xval)]− E[MIAi(xsus)])

> 0 if Dsus is member set, otherwise ≤ 0.

(3)

Here, wi ∈ R is the weight for the MIA score MIAi. Assum-
ing that Dsus and Dval are i.i.d., we have E[MIAi(xval)] >
E[MIAi(xsus)] on member set and E[MIAi(xval)] ≈
E[MIAi(xsus)] on non-member set for each MIA score.
Therefore, we have ydiff close to 0 on the non-member set,
regardless of the weights wi. However, when we synthesize
the held-out set with a generator, there can be a small dis-
tributional shift between Dsus and Dval. With this shift, we
can have E[MIAi(xval)] < E[MIAi(xsus)] on non-member
set. This is often the case for generated text, because the
generator usually produces held-out texts that are simpler
than human-written texts, therefore causing the generated
held-out texts to have smaller perplexity. This affects most
perplexity-based methods, such as LOSS, Min-K%, and
Zlib ratio. Consequently, the linear regression algorithm can
assign negative weight wi to such MIA scores, which causes
ydiff > 0 on the non-member set and therefore high false pos-
itive rates. To ensure that this generation shift does not add
up to a falsely high ydiff, we constrain the weights to be posi-
tive. As shown in Figure 4, the weights are projected fromR
to (0, 1) with Sigmoid function σ(x) = 1

1+e−x . With such a
weight constraint, the linear regression only assigns a small
weight wi for MIAi if E[MIAi(xval)] < E[MIAi(xsus)],
avoiding false positives in many cases. We also present the

Table 3. Results for single author blog posts. Here, p-value <
0.05 indicates the suspect set is member set.

True AUC Text AUC Comb P-value Inferred
Membership (%) (%) Membership

✓ 53.8 55.6 0.01 ✓
✕ 53.8 53.9 0.13 ✕

empirical analysis of the weight constraint in Section 5.4
and an example for the weight constraint in Appendix G.

5. Experimental Evaluation
We start by introducing our experimental setup, further de-
tailed in Appendix D. Then, we present the results of DI
executed based on our generated held-out data. We also per-
form ablation studies to investigate the contribution of each
component in our proposed method. Finally, we analyze the
impact of t-test sample size and the classifier architecture.

5.1. Experimental Setup

Single author data. We collect 1400 blog posts from a
single author. All figures, tables, videos, and hyperlinks are
removed during pre-processing and only plain text is used
for evaluation. We sample 450 posts as member data and
finetune a Pythia 410M deduplicated model as target model.
The other posts are held out as non-member and held-out
sets for the evaluation.

More Complicated Dataset and Model. We also evaluate
our method on the Pile dataset (Gao et al., 2020), which is
much more complicated and has subsets of diverse types of
texts. We use the de-duplicated version of Pythia 1B model
as the target model. The training split of the Pile dataset is
used as member data, and the held-out and test split is used
as non-member data. Here, we only evaluate Pile subsets
that are free from copyright issues. Please also refer to
Appendix C for detailed configuration on the Pile.

Implementation Details We finetune a Llama 3 8B model
(Dubey et al., 2024) with LoRA as the generator. For both
types of datasets, we split 2,000 sequences as the generator
inference set, and the others as the generator training split.
Both text classifier and combined classifier are trained on
1,000 synthetic held-out data and 1,000 suspect data for each
dataset. Our proposed t-test is also conducted on 1,000 syn-
thetic held-out data and 1,000 suspect data. More implemen-
tation details can be found in Appendix D. We also provide
an analysis of hyperparameter sensitivity in Appendix K.

5.2. Results for Single Author Dataset

The experimental results on the single author dataset are pre-
sented in Table 3. On the member set, the combined classi-
fier ccomb outperforms the text classifier ctext, by a large mar-
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Table 4. Results for different Pile subsets. True represents the
true membership while Inferred denotes the inferred membership.
Our generation is successful if these two align.

Subset True AUC Text AUC Comb P-value Inferred(%) (%)

Pile-CC ✓ 55.6 58.2 0.002 ✓
✕ 55.3 53.3 0.99 ✕

Wikipedia ✓ 56.0 56.8 0.04 ✓
✕ 54.9 52.4 1.00 ✕

ArXiv ✓ 53.6 59.1 <0.001 ✓
✕ 53.1 53.3 0.74 ✕

NIH ExPorter ✓ 56.8 57.7 0.02 ✓
✕ 55.6 53.3 1.00 ✕

FreeLaw ✓ 52.8 58.4 <0.001 ✓
✕ 51.4 53.9 0.09 ✕

Ubuntu IRC ✓ 53.4 55.8 0.01 ✓
✕ 53.4 54.9 0.33 ✕

PubMed Central ✓ 54.6 58.1 <0.001 ✓
✕ 54.7 55.5 0.11 ✕

Github ✓ 53.6 55.7 0.003 ✓
✕ 53.9 55.4 0.07 ✕

EuroParl ✓ 51.0 57.0 <0.001 ✓
✕ 51.4 53.9 0.07 ✕

PhilPapers ✓ 55.1 59.1 <0.001 ✓
✕ 61.1 56.0 0.99 ✕

HackerNews ✓ 56.7 60.7 <0.001 ✓
✕ 58.0 56.7 0.43 ✕

Enron Emails ✓ 54.5 58.0 <0.001 ✓
✕ 54.6 52.9 0.99 ✕

StackExchange ✓ 54.3 60.1 <0.001 ✓
✕ 53.0 55.0 0.06 ✕

PubMed Abstracts ✓ 54.5 59.0 <0.001 ✓
✕ 53.8 53.4 0.90 ✕

USPTO Backgrounds ✓ 52.8 57.1 0.001 ✓
✕ 52.8 52.2 0.97 ✕

DM Mathematics ✓ 53.9 55.5 0.002 ✓
✕ 54.0 51.3 1.00 ✕

gin of 1.8% AUC score. Moreover, the observed p-value of
0.01 strongly supports the alternative hypothesis, indicating
that the superior performance of ccomb over ctext is statisti-
cally significant. This enables our method to correctly iden-
tify that the target set is part of the training set. For the non-
member set, ccomb and ctext achieve comparable AUC scores,
with a p-value of 0.13 that significantly exceeds the thresh-
old of 0.05. This result confirms the ability of our approach
to correctly identify non-member texts as such, thus avoid-
ing the false positives that occur with the original LLM DI
approach. Here, we finetune the target model on the single
author dataset with LoRA for one epoch. We also present
the results with other fine-tuning setups in Appendix H.

5.3. Results for Pile Datasets

The results of different Pile subsets are shown in Table 4.
We observe that DI correctly predicts the membership of
datasets from diverse domains and styles, including plain

Table 5. Ablation studies of our approach. Setting 1-3: replacing
our generation method with baselines. Setting 4-5: removing key
designs from our generation method. Setting 6: without post-hoc
calibration. Setting 7: without weight constraint. Setting 8: our
complete method.

Setting Configuration True P-value Inferred
Membership Membership

1 w/o Suffix Completion ✓ 1.0 ✕
(ICL Paraphrasing) ✕ 1.0 ✕

2 w/o Suffix Completion ✓ 1.0 ✕
(ICL Text Completion) ✕ 1.0 ✕

3 w/o Suffix Completion ✓ 1.0 ✕
(Preference Optimization) ✕ 1.0 ✕

4 w/o Segment and Shuffle ✓ 1.0 ✕
✕ 1.0 ✕

5 w/o Suffix Comparison ✓ 1.0 ✕
✕ 1.0 ✕

6 w/o Post-hoc Calibration ✓ <0.001 ✓
(Original T-test in DI) ✕ <0.001 ✓

7 w/o Weight Constraint ✓ 0.004 ✓
✕ 0.43 ✕

8 Ours ✓ <0.001 ✓
✕ 1.0 ✕

text, academic writing, and code using our method for gen-
erating the held-out data. The results also show that our gen-
eration method generalizes well to documents with different
lengths, ranging from 1 KB (Wikipedia) to 70 KB (PhilPa-
pers). Moreover, our proposed method generalizes well to
texts from different domains and languages, e.g., medical
(PubMed Central), legal (FreeLaw), and multilingual (Eu-
roParl) domains. Notably, the p-values for our difference
comparison t-test are significantly lower than 0.05 on all the
evaluated member sets, and higher than 0.1 on all the non-
member sets. Please refer to Appendix F and Appendix I for
the results on different model sizes and model architectures.

5.4. Ablation on Post-hoc Dataset Inference

We conduct ablation studies to separately analyze the contri-
bution of the three components in our held-out data genera-
tion: suffix completion, calibrating, and weight constraint.

Suffix Completion. As presented in Table 2, our proposed
sequence completion scheme can synthesize held-out texts
with a distribution much more similar to the suspect texts
when compared with the baseline methods. In addition to
the AUC results, we also show that the baseline generation
methods cannot produce reliable held-out sets even when
combined with our post-hoc calibration and weight con-
straint in Table 5. In particular, we replace our generation
scheme with three baselines, including ICL paraphrasing,
ICL text completion, and preference optimization. The p-
values are presented as Setting 1-3. We also remove two key
designs in our generation method, 1) Segment and Shuffle,
and 2) Suffix Comparison, as shown in Setting 4-5. In all
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Figure 5. The p-values of member sets with change in sample
size. MedianDataset denotes the median p-value of different datasets,
and MeanDataset is the maximum p-value of all subsets. Number of
samples refers to the total size of both suspect and validation sets.

the above settings, the p-values for both member and non-
member sets are 1.0, which indicates that the ctext has bet-
ter or similar performance when compared with ccomb. The
reason behind the observation is that the distributional shift
caused by the generation is much larger than the shift in-
duced by the membership signal, such that ccomb does not
outperform ctext even with extra membership inputs on the
member set. Consequently, the DI predicts both sets as non-
member and suffers from false negatives.

Post-hoc Calibration. We replace our calibration method
with the original DI without calibration, as shown in Set-
ting 6 of Table 5. Specifically, only a linear classifier is op-
timized to aggregate different MIA metrics and output the
final prediction score. Furthermore, the t-test is conducted
directly between the predictions on the target set and the
ones on the held-out set. We observe that the p-values under
this condition are extremely low for both member and non-
member sets, and DI has false positive in this case. This
observation aligns with results in Section 3, where we show
that even a small distributional shift causes a significantly
small p-value in the original DI. Therefore, our post-hoc cal-
ibration approach is crucial to evaluating the distributional
shift caused only by membership signals.

Weight constraint. As explained in Section 4.3, the weight
constraint avoids summing the distributional shift caused
by generation to the final MIA prediction when the direc-
tion of the generation shift is different from that caused by
the membership signal. As shown in Setting 7 of Table 5,
applying the constraint leads to a much lower p-value on
the member set and much higher on non-member set, which
helps our method make a more accurate prediction about
the membership.

5.5. Analysis of Sample Size

We also set out to analyze how the sample size in our pro-
posed t-test affects the statistical confidence of DI with our
generated held-out data. Here, the sample size is the total

Table 6. The AUC of different classifier architectures.

Architecture AUC Text Training Time

all-MiniLM-L6-v2 50.8 0.3
BERT 51.2 2.0

Llama3-8B, Pre-trained+LoRA 53.2 65.1
GPT2, Pre-trained+LoRA 53.0 26.2

GPT2, Pre-trained+Full Finetuned 52.3 36.8
GPT2, 2 Layers+Initialized 53.3 0.5

number of the suspect and held-out set, which is also the
number of queries made to the target model. The two sets
are of the same size, as they are produced in a pairwise man-
ner. We observe from Figure 5 that, as the number of sam-
ples increases, DI exhibits improved detection capability of
training data. Notably, with fewer than 1,000 samples, DI
achieves statistical significance (p < 0.05) across most of
the evaluated datasets. When increasing the sample size to
2k queries, the method demonstrates even stronger statisti-
cal significance (p < 0.01) consistently across all datasets.

5.6. Choice of Classifier

We explore different text classifier architectures and present
the results for different architectures and different parame-
ter sizes in Table 6. The results show that the simple GPT2-
based classifier with 2 layers and initialized weights can
achieve the best AUC in our experimental settings. Addi-
tionally, this lightweight classifier has a significantly short
training time, making the method more practical when faced
with more queries. Therefore, we choose this 2-layer GPT2-
based classifier as our text classifier. During our experi-
ments, we consider the scenario where the author can only
provide a limited number of tokens, so stronger text classi-
fiers, such as Llama and full GPT2 models, can be easily
overfitted. In real-world applications, an arbitrator is sug-
gested to select the most suitable text classifier based on
their specific conditions regarding data size, data type, and
computation resources.

6. Conclusions
We propose how to synthetically generate an in-distribution
held-out dataset to enable the real-world application of DI.
Therefore, we solve two critical challenges, namely (1)
creating high-quality, diverse synthetic data that accurately
reflects the original distribution and (2) bridging likelihood
gaps between real and synthetic data. Our solution relies on
designing a data generator training scheme based on a suffix-
based completion task and post-hoc calibration to align the
likelihood gaps between real and synthetic data. Through
extensive experimental evaluation, we highlight that our
method enables a robust DI and correctly identifies training
data while achieving a low false positive rate. This shows
our method’s reliability to support copyright owners to make
legitimate claims on data usage for real-world litigations.
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Impact Statement
Crawling of data for training LLMs is becoming pervasive,
with model training companies scraping vast spans of the
internet in order to find high-quality data. Given the strong
correlation between data quality and model performance,
many content creators want to protect their work from be-
ing trained on, without their consent. Claiming that one’s
data has been trained on, only with access to the suspect
LLM, has thus far stayed near impossible. Our work takes
a leap forward by allowing content creators to ‘post-hoc’
infer if their data on the internet was trained on by leverag-
ing synthetic data. This means that authors, bloggers, and
columnists with decades of internet data can now leverage
our method in order to claim their rightful ownership. Our
work aims to serve as an important tool in future copyright
litigations, in particular in their ‘discovery’ period.
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A. Details of ICL Generation
We experiment with GPT-4-Turbo and prompt it using in-context-learning learning to paraphrase the suspect data. Each
prompt includes a few data points as demonstrations (shots) and requests the model to produce paraphrases for the suspect
set. We test two types of templates to prompt GPT-4-Turbo model with in-context-learning (ICL). One is to paraphrase the
given sample based on the examples, and the other is to complete the text with part of the sentence.

A.1. Text Completion Prompt

In the text completion prompt, we give ten examples from the author provided documents, and prompt the GPT-4-Turbo
model to complete the given sample, which is shown at the end of the prompt. Here is an example of this kind of queries:

Input:

I have some text samples. Please help me complete the last sample based on my
example samples.

A device may be provided to sense an environment’s present temperature. For
example, [...] a thermistor that is robust and reliable and that can be
fabricated at a reasonable cost.

[...]
This invention relates to a method of synthesizing musical tones.A musical tone

or natural tone produced by an acoustic or natural musical instrument can
[...] With the music synthesizer it is considerably difficult to obtain
dynamic audio spectra.pneumoniae.

Radio communications receivers commonly receive and decode messages which contain
information. A part of this information may be [...]a single radio will
transmit messages to the remainder of the group. These radio

Output:

messages are selectively received by the grouped radios which decode the identity
information within the [...] and secure group communications in diverse and
often challenging operational environments.

A.2. Paraphrasing Prompt

In the paraphrasing prompt, we give ten examples from the author provided documents, and prompt the GPT-4-Turbo model
to paraphrase the last. Here is an example of this kind of queries:

Input:

Paraphrase the last sample according to the other samples.
1. Field of the Invention This invention relates generally to fluid injectors.

More particularly, this invention relates to a proportional needle control
fuel injector having a [...] The needle valve is moveable between a first
position closing the injection fuel outlet port and a second position to open
to injection fuel outlet.

[...]
The present invention relates to the structure of a casing of a miniature

portable [...] is forcibly urged away from the casing by a tool, it is likely
that the casing is scratched or the base plate is deformed.

This invention relates to fuel cells and, in particular, to improvements in the
catalyst used in internal [...] fuel cell in which the catalyst assembly
has minimum displacement and permits vertical and horizontal orientations of
the fuel cell.

Output:
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This invention pertains to fuel cells, specifically addressing enhancements in
catalysts utilized [...] and efficiency of internal reforming fuel cells by
mitigating previous limitations and improving overall system functionality.

A.3. Distribution Shift Analysis

The distributional shifts are quantified in BoW AUC and GPT2 AUC as shown in Table A1. As observed, both types of
prompt templates produces synthetic texts with large distributional shifts to the suspect sets. Notably, the GPT2-based
classfier can achieve as much as an AUC of 99.2%.

Table A1. Distributional shifts between the suspect set and GPT-4-Turbo generated validation set.

Template Type BoW AUC(%) GPT2 AUC(%)

ICL Text Completion 79.2 99.2
ICL Paraphrasing 76.2 99.0

B. Details of Preference Optimization Generation
Preference optimization methods focus on optimizing a pre-trained LLM based on human preference (Rafailov et al., 2024;
Xu et al., 2024). Particularly, LLMs iteratively produce random generations, then human annotators are requested to label
the generations as chosen or rejected, and the LLMs are further optimized according to this human feedback. We note
that, we can leverage preference optimization approaches to make our generator model prefer the human-written texts over
synthetic data, thus producing texts with a more similar distribution to natural texts. Here, we instantiate the preference
optimization scheme with a state-of-the-art method, the simple preference optimization (SimPO) (Meng et al., 2024). During
each training iteration, the human-written suspect data are always labeled as chosen and the generations from the last
iteration are marked as rejected. As noted in Section 4.1, this approach improves significantly upon prompted paraphrasing,
but still causes a large distributional shift between the suspect set and the generated held-out set.

Table A2. Segmentation configurations for different Pile subsets.

Subset Number of Chosen Max. Snippets Number of
Test Set in Pile Split Size per Document Tokens per Snippet

Pile-CC >3000 3000 30 64
StackExchange >4000 4000 5 64

PubMed Abstracts >6000 6000 5 64
Wikipedia (en) >3000 3000 30 64

USPTO Backgrounds >6000 6000 10 32
PubMed Central >500 500 100 64

FreeLaw >4000 4000 5 32
ArXiv >200 200 100 32

NIH ExPorter >4000 4000 5 64
HackerNews >3000 3000 10 64

Github >2000 2000 20 64
Enron Emails 1957 1957 50 32

DM Mathematics >1500 1500 50 32
EuroParl 290 290 200 32

PhilPapers 132 132 100 32
Ubuntu IRC 43 20 2000 32

C. Pile Dataset Segmentation
We present the details for the configurations of Pile subset in Table A2. We note that, it is claimed that the following Pile
subsets may have copyright issues and cannot be included for evaluation: Books3, OpenWebText2, Gutenberg (PG-19),
OpenSubtitles. BookCorpus2, and YoutubeSubtitles. For most subset there are documents that are much longer than the
other documents, which causes that too many snippets are sample from these documents if all snippets are used. Therefore,
we set a maximum snippet for each document on each subset according to the median lengths of the documents. Also, we
note that our approach can achieve good performance on most subsets with only 32 tokens. For certain subsets, we use
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a token length of 64 for a stronger membership signal. The average token number for the Pile subset is 45. In practical
applications, we suggest choosing the token numbers when the text-classifier has the minimal AUC to avoid distributional
shift as much as possible. As a more conservative approach, this avoids making false accusations of copyright violation.

D. Implementation Details
D.1. Generator

The LoRA rank for the generator is 32. The generator is trained for 100 epochs, and the learning rate is set to 2× 10−4. We
set a warm-up ratio of 0.03, and a linear scheduler is used to dynamically adjust the learning rate.

D.2. Text and Combined Classifiers

For both the text and the combined classifier, we leverage the basic architecture of the GPT2 classfier with an extra linear
layer. Specifically, the classifier has only two layers, with an embedding dimension of 1600 and an attention head number of
25. As explained in Section 4.3,, we apply a weight constraint to the linear layer. The GPT2-based classifier is optimized for
20 epochs, and the linear layer is further optimized for 200 epochs.

E. Examples of Synthetic Texts
In this section, we provide some examples of the synthetic texts on the Pile dataset. Here, prefix denotes the first half of
the generated text, real suffix refers to the original suffix of the natural text, and generated suffix refers to the synthetic
completion based on the prefix. We observe that, the generated suffixes are reasonable continuation of the prefixes. The
generated suffixes also align with the style of each dataset and do not overfit to the content of the real suffixes.

E.1. Pile-CC

Prefix:

are excited about and also what we hoped to see from this years E3!

Real suffix:

From the surprising new Spider-Man PS4 game to the bizarre We Happy Few and

Generated suffix:

Let us know your thoughts on this monologue as we are preparing for our next

E.2. StackExchange

Prefix:

var FKEntityListWithCastCopy = new debiteur().GetType().GetProperty(\""

Real suffix:

schakeling\").GetValue(dbEntry) as List<FKEntity>;//Just

Generated suffix:

FKEntityList\").GetValue(instance, null);\n foreach(var t in FKEntity

E.3. PubMed Abstracts

Prefix:

were calculated using the Kaplan-Meier method. Of the 117 patients in
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Real suffix:

whom data were analyzed, 103 had follow-up MR or CT images and 14 patients were

Generated suffix:

the study (76 with UC and 41 with DC), 45 patients required proctocolic resection

E.4. Wikipedia (en)

Prefix:

Em is going away for a while. While it’s not up to the standard

Real suffix:

of "Mockingbird," it is more fully realized than the two other new

Generated suffix:

of their three previous albums, cattle call is still an enjoyable romp,

E.5. USPTO Backgrounds

Prefix:

1. Field of the Invention\nThis invention relates to a storage device for
athletic equipment and, in particular, to a portable storage device for
transporting and retaining

Real suffix:

elongate items of athletic equipment such as hockey sticks and related athletic
equipment.\n2. Discussion of Related Art\nNumerous team athletic activities
require individual players on the

Generated suffix:

multiple pairs of basketballs.\n2. Description of the Related Art\nDuring the
summer and other periods when there is an extended break from an athletic
school or program

E.6. PubMed Central

Prefix:

example, both cycles apply Lewis acidic metal centers to bind the monomers (ep

Real suffix:

oxide or lactone), and both invoke labile metal alkoxide intermediates as

Generated suffix:

oxides or cyclic carbonates), but the axes of the metallacycle in
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E.7. FreeLaw

Prefix:

Court, 638 P.2d 65 (Colo.1981

Real suffix:

Here, the juvenile court denied the GAL’s motions because it did not want

Generated suffix:

), cert. denied, 454 U.S. 1146, 102

E.8. Arxiv

Prefix:

up and vice versa. In contrast, fundamentalists expect the price to track its

Real suffix:

fundamental value. Orders from this type of agent may be written as\n\n$$D

Generated suffix:

underlying fundamentals up and down, but given sufficient acceleration the price
might \u201crun away

E.9. NIH ExPorter

Prefix:

attachment and growth, respectively. Together with an industrial sponsor, Vaxiron
,

Real suffix:

Inc., we will develop quality control tools and metrics for assessing vaccine
antigen formulations,

Generated suffix:

the applicant has carried out clinical trials of different vaccine candidates
based on different viruses for

E.10. Github

Prefix:

.string \"reach only by using a BIKE technique.$\"\n\nRoute110_Text_

Real suffix:

16EEF6:: @ 816EEF6\n\t.string \"Which

Generated suffix:

16F381:: @ 816F381\n\t.string \"ROUTE {ROAD
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E.11. Enron Emails

Prefix:

Lay. He went on to say that Kenneth was Dewayne Re

Real suffix:

es’ cousin and started telling about all of your fine attributes and what a

Generated suffix:

ams’ direct \nreport and that it would be extremely difficult for Kenneth to get

E.12. EuroParl

Prefix:

het mondeling amendement op schrift heeft gekregen.\nIk st

Real suffix:

el voor om niet te spreken over \"de Raad en de lidstat

Generated suffix:

akk voor de uitnodiging om tijdens uw volgende bij

E.13. PhilPapers

Prefix:

distribute well among [the gods who fought with him] their titles and privileges

Real suffix:

" (885, cf. 66\u201367 and 74); to swallow

Generated suffix:

(17.1). Orderly distribution of praise for the victory is re

E.14. Ubuntu IRC

Prefix:

about setting up reoccuring status meetings?\n<dfarning> should we start

Real suffix:

holding those or is it too soon?\n<dfarning> Luke will be joining

Generated suffix:

with a status meeting or a design meeting?\n<manusheel> dfarning
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E.15. HackerNews

Prefix:

Angular (work just uses Dojo).\n\nPeople don’t seem to

Real suffix:

be hungry here.\n\n------\nlewispollard\nWorked for IBM as a software engineer on
one of

Generated suffix:

care that it’s adding yet another ˜20KB per page. We’re\nsaying no

F. Generalization to Different Model Sizes
Here, we evaluate the performance of our method on three different model sizes of the Pythia model: 1.4B, 2.8B, and 6.9B.
We use an outlier removal ratio r = 0.01 for Pythia-6.9B, r = 0.05 for Pythia-2.8B, r = 0.1 for Pythia-1.4B, r = 0.15 for
Pythia-1B, r = 0.2 for Pythia-410M. All the tested models are the deduplicated versions. The results demonstrate that our
proposed method generalizes well across different model sizes.

Table A3. Results for different sizes of Pythia Models. True represents the true membership while Inferred denotes the inferred
membership. Our generation is successful if these two align.

Subset True
Pythia-410M Pythia-1.4B Pythia-2.8B Pythia-6.9B

AUC Text AUC Comb P-value Inferred AUC Text AUC Comb P-value Inferred AUC Text AUC Comb P-value Inferred AUC Text AUC Comb P-value Inferred(%) (%) (%) (%) (%) (%) (%) (%)

Pile-CC ✓ 54.9 57.4 0.009 ✓ 55.5 57.5 0.007 ✓ 56.2 57.8 0.02 ✓ 55.9 58.2 0.006 ✓
✕ 54.2 51.0 1.00 ✕ 55.1 53.9 0.89 ✕ 54.0 52.8 0.94 ✕ 54.8 55.1 0.30 ✕

ArXiv ✓ 54.3 60.5 <0.001 ✓ 54.0 59.3 <0.001 ✓ 53.8 57.7 <0.001 ✓ 53.7 57.0 <0.001 ✓
✕ 52.8 52.9 0.87 ✕ 53.8 54.0 0.64 ✕ 52.3 53.1 0.67 ✕ 52.4 53.6 0.39 ✕

FreeLaw ✓ 52.9 58.3 <0.001 ✓ 52.6 57.3 <0.001 ✓ 52.2 57.4 <0.001 ✓ 52.2 56.7 <0.001 ✓
✕ 52.3 53.6 0.41 ✕ 52.1 54.7 0.07 ✕ 52.2 54.6 0.05 ✕ 51.9 54.6 0.05 ✕

PubMed ✓ 54.7 58.0 <0.001 ✓ 54.4 58.4 <0.001 ✓ 55.1 57.9 0.002 ✓ 54.7 57.2 0.002 ✓
Central ✕ 55.2 55.4 0.24 ✕ 54.9 55.9 0.06 ✕ 55.1 56.0 0.06 ✕ 54.9 55.5 0.10 ✕

Euro- ✓ 51.2 55.7 0.002 ✓ 51.5 55.6 0.004 ✓ 51.0 53.9 0.02 ✓ 50.7 54.2 0.04 ✓
Parl ✕ 51.3 53.8 0.13 ✕ 51.3 53.2 0.31 ✕ 51.1 53.2 0.20 ✕ 51.4 53.3 0.22 ✕

Phil- ✓ 55.3 59.5 <0.001 ✓ 54.8 58.3 <0.001 ✓ 54.9 58.0 <0.001 ✓ 55.2 56.8 0.02 ✓
Papers ✕ 61.2 55.6 1.00 ✕ 61.2 56.1 0.98 ✕ 61.4 56.2 0.98 ✕ 60.2 56.0 0.99 ✕

Hacker ✓ 56.4 61.1 <0.001 ✓ 56.5 59.8 <0.001 ✓ 56.3 59.0 <0.001 ✓ 56.5 59.1 0.002 ✓
News ✕ 58.2 55.6 0.94 ✕ 58.2 57.1 0.24 ✕ 58.1 57.7 0.17 ✕ 58.7 57.7 0.24 ✕

Enron ✓ 54.5 58.1 <0.001 ✓ 54.4 56.9 0.003 ✓ 54.1 57.7 <0.001 ✓ 54.4 56.2 0.04 ✓
Emails ✕ 54.8 52.8 1.00 ✕ 54.6 53.0 0.97 ✕ 54.5 54.9 0.20 ✕ 54.6 54.0 0.76 ✕

Stack ✓ 54.1 61.9 <0.001 ✓ 54.2 58.8 <0.001 ✓ 53.9 58.1 <0.001 ✓ 54.2 57.2 0.002 ✓
Exchange ✕ 52.3 55.0 0.06 ✕ 52.1 54.3 0.090 ✕ 52.1 54.1 0.24 ✕ 52.5 54.0 0.29 ✕

PubMed ✓ 54.6 59.7 <0.001 ✓ 54.4 58.5 <0.001 ✓ 54.1 58.3 <0.001 ✓ 54.4 58.1 <0.001 ✓
Abstract ✕ 54.9 52.6 1.00 ✕ 54.1 54.0 0.74 ✕ 53.9 53.7 0.83 ✕ 53.9 54.3 0.57 ✕

USPTO ✓ 52.9 56.8 0.002 ✓ 52.8 56.3 0.004 ✓ 52.4 55.6 0.028 ✓ 52.6 55.4 0.018 ✓
Back. ✕ 52.6 51.7 1.00 ✕ 52.9 52.2 0.99 ✕ 52.5 52.2 0.98 ✕ 52.6 53.1 0.75 ✕

G. Example of Weight Constraint
Here, we provide the following example to illustrate the importance of weight constraint. In Table A4, we show the score of
three MIAs for a suspect/held-out pair on both member and non-member sets. For each suspect/held-out pair, the smaller
MIA score is highlighted in bold in the table. We have the following observations:

1. On the member set, suspect data consistently shows smaller MIA scores. This occurs because membership signals have
stronger effects than generation, causing suspect data to consistently yield lower MIA scores than held-out data.
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2. On the non-member set, held-out data may exhibit smaller values for certain MIAs. This happens because generation
randomness introduces fluctuation in MIA scores.

For both member and non-member sets, we train a linear model l that aggregates all MIA scores to predict an overall score:

l(x) =
∑
i

wiMIAi(x) (4)

The held-out set is labeled as 1 and the suspect set as 0. The model assigns positive weights wi to any MIA metrics MIAi

on the member set because label 0 < 1 and MIAi(suspect) < MIAi(held-out). However, on the non-member set, the model
assigns a negative weight w3 for MIA3. This means a smaller MIA3 score in the held-out set would contribute to a larger
overall MIA score, which is undesirable. To address this, we constrain all weights in the linear model to be strictly positive,
ensuring that a lower MIAi score can only result in a lower overall MIA score.

Table A4. An example to demonstrate the importance of the weight constraint.

Membership Split Label MIA1 MIA2 MIA3

✓
Suspect (natural) 0 0.86 0.87 0.54

Held-out (generated) 1 0.90 0.91 0.55

✕
Suspect (natural) 0 0.88 0.89 0.58

Held-out (generated) 1 0.90 0.90 0.56

H. Other Finetuning Configurations for Single Author Dataset
We evaluate our proposed approach on the single author dataset under different finetuning settings in Table A5. The results
show that, the membership signal is stronger when the model is fine-tuned with more epochs. Also, our method performs
better when full finetuning is used instead of LoRA.

Table A5. Results for different fine-tuning methods. True represents the true membership while Inferred denotes the inferred member-
ship. Our generation is successful if these two align.

Fine-tuning Method True AUC Text AUC Comb P-value Inferred(%) (%)

LoRA ✓ 53.8 55.6 0.01 ✓
(1 epoch) ✕ 53.8 53.9 0.13 ✕

LoRA ✓ 53.7 56.2 0.005 ✓
(10 epochs) ✕ 53.6 53.5 0.14 ✕

Full Finetuning ✓ 53.7 56.8 0.008 ✓
(1 epoch) ✕ 53.8 53.7 0.21 ✕

I. Results on the OLMo Model
We conduct the experiments to analyze the performance with OLMo-7B model (Groeneveld et al., 2024). The OLMo-7B
model is trained on the Dolma V.1.7 dataset (Soldaini et al., 2024), which has a large size of 4.5 TB. Following Duan et al.
(2024), we use Dolma V.1.7 as the member set and employ Paloma (Magnusson et al., 2024) as the non-member set. The
results in Table A6 demonstrate that our method successfully detects both member and non-member sets for Wikipedia and
Common Crawl subsets when using the OLMo-7B model as the target model.

J. Ablation Studies on Single Author Dataset
In addition to the ablation studies on the Pile presented in Section 5.4, we also perform the ablation studies on the single
author dataset. The results in Table A7 follow a similar trend to the Pile, showing the importance of each component in our
framework.
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Table A6. Results for OLMo-7B on different data subsets. True represents the true membership while Inferred denotes the inferred
membership. Our generation is successful if these two align.

Subset True AUC Text (%) AUC Comb (%) P-value Inferred

Wikipedia ✓ 52.9 55.4 0.009 ✓
✕ 52.1 50.6 1.0 ✕

Common Crawl ✓ 53.5 55.7 0.01 ✓
✕ 54.2 53.8 0.68 ✕

Table A7. Results for different configurations. True Membership represents the true membership while Inferred Membership denotes
the inferred membership. Our generation is successful if these two align.

Configuration True Membership P-value Inferred Membership

w/o Suffix Completion ✓ 1.0 ✕
(ICL Paraphrasing) ✕ 1.0 ✕

w/o Post-hoc Calibration ✓ <0.001 ✓
(Original T-test in DI) ✕ <0.001 ✓

w/o Weight ✓ 0.02 ✓
Constraint ✕ 0.08 ✕

Ours ✓ 0.01 ✓
✕ 0.13 ✕

K. Analysis of Hyperparameter Sensitivity
We conducted a comprehensive analysis of hyperparameter sensitivity, focusing on two key parameters: the number of
epochs and the number of t-test samples. The number of epochs represents the training epochs for our linear model that
aggregates MIA scores. The number of t-test samples indicates the total sample size used in our statistical analysis, including
both the suspect and synthetic held-out sets. Our experimental results in Table A8 demonstrate that our proposed method
exhibits robust performance across a wide range of values for both hyperparameters, indicating low sensitivity to these
configuration choices.

Table A8. Performance of our method across different numbers of epochs and T-test samples.

Hyperparameter Value True membership P-value Inferred membership

Number of Epochs

100 ✓ <0.001 ✓
✕ 1.0 ✕

200 ✓ <0.001 ✓
✕ 1.0 ✕

500 ✓ <0.001 ✓
✕ 1.0 ✕

1000 ✓ 0.003 ✓
✕ 1.0 ✕

Number of T-test Samples

1000 ✓ <0.001 ✓
✕ 1.0 ✕

2000 ✓ <0.001 ✓
✕ 1.0 ✕

3000 ✓ <0.001 ✓
✕ 0.41 ✕

4000 ✓ <0.001 ✓
✕ 0.25 ✕

L. Other Related Works about Test Set Contamination Detection
Test set contamination is a newly identified risk, where the public test benchmarks are involved during LLM training
(Balloccu et al., 2024). For example, Roberts et al. (2024) observe that LLMs are better at generating code with more
appearances on GitHub, revealing that LLMs can be contaminated with open-source GitHub data and are overestimated
on coding tasks. Similarly, Li & Flanigan (2024) demonstrate that some LLMs have a better performance on few-shot
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benchmarks constructed before the model training, which indicates test set contamination for LLMs. To detect test set
contamination, Golchin & Surdeanu (2023) design prompts that guide LLM to reproduce exact or near-exact test set
instances, such that the model encloses the contaminated samples memorized during the pre-training phase. Oren et al.
(2024) compare the target model predictions between a test set and all of its permutations. However, this method is based on
the assumption that the test set is involved in the training set in its exact order, which could be interrupted by a random
shuffle before training. Test set contamination can also be a potential application of our method, as the proposed approach
can perform training data detection on complex datasets composed by different authors.

M. Algorithm of Our Work
We present the detailed algorithms for our held-out data generation in Algorithm 1, and post-hoc calibration in Algorithm 2.

Algorithm 1 Held-out Data Generation

Require: Documents Doc = {Doc1, ..., Docm}
Require: Hyperparameters: Document number m, Maximum sequence in each document MaxSeq
Ensure: Suspect set Dsus and held-out set Dval are nearly IID

1: Initialize: Seq,Dsus,Dval = {}, {}, {}
2: for each document doci ∈ Doc do
3: Segment doci into multiple sequences {seq1i , ..., seq

mi
i }

4: if mi < MaxSeq then
5: Seqi = {seq1i , ..., seq

mi
i }

6: else
7: Seqi = randomly sampled MaxSeq sequences from {seq1i , ..., seq

mi
i }

8: end if
9: Seq = Seq ∪ Seqi

10: end for
11: Randomly split Seq into generator training set Seqtrain and generator inference set Seqtest
12: Optimize generator g on Seqtrain with next-token prediction loss
13: for each seqi ∈ Seq do
14: prei, sufi = Divide(seqi)
15: suf ′

i = g(prei)
16: Dsus = Dsus ∪ {(sufi, 0)}
17: Dval = Dval ∪ {(suf ′

i , 1)}
18: end for

Algorithm 2 Post-hoc Calibration

Require: Target model f
Require: Suspect set Dsus and held-out set Dval are nearly IID.

1: Randomly split Dsus into suspect training set Dtrain
sus and suspect test set D test

sus
2: Randomly split Dval into held-out training set D train

val and held-out test set D test
val

3: Optimize a text classifier ctext(x) on Dtrain
sus ∪ D train

val
4: Optimize a combined classifier ccomb(x,MIA(f(x))) on Dtrain

sus ∪ D train
val

5: Ddiff
text = {}

6: Ddiff
comb = {}

7: for xtest
sus , x

test
val ∈ D test

sus ,D test
val do

8: Ddiff
comb = Ddiff

comb ∪ {ccomb(x
test
val ,MIA(f(xtest

val )))− ccomb(x
test
sus ,MIA(f(xtest

sus )))}
9: Ddiff

text = Ddiff
text ∪ {ctext(xtest

val )− ctext(x
test
sus )}

10: end for
11: Compare and Ddiff

comb and Ddiff
text with t-test

22


