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Abstract

Deep neural networks (DNNs) have been shown to memorize their training data, yet
similar analyses for graph neural networks (GNNs) remain largely under-explored.
We introduce NCMemo (Node Classification Memorization), the first frame-
work to quantify label memorization in semi-supervised node classification. We
first establish an inverse relationship between memorization and graph homophily,
i.e., the property that connected nodes share similar labels/features. We find that
lower homophily significantly increases memorization, indicating that GNNs rely
on memorization to learn less homophilic graphs. Secondly, we analyze GNN
training dynamics. We find that the increased memorization in low homophily
graphs is tightly coupled to the GNNs’ implicit bias on using graph structure during
learning. In low homophily regimes, this structure is less informative, hence induc-
ing memorization of the node labels to minimize training loss. Finally, we show
that nodes with higher label inconsistency in their feature-space neighborhood are
significantly more prone to memorization. Building on our insights into the link
between graph homophily and memorization, we investigate graph rewiring as a
means to mitigate memorization. Our results demonstrate that this approach effec-
tively reduces memorization without compromising model performance. Moreover,
we show that it lowers the privacy risk for previously memorized data points in
practice. Thus, our work not only advances understanding of GNN learning but
also supports more privacy-preserving GNN deployment.

1 Introduction

Graph Neural Networks (GNNs) are a class of deep learning algorithms that adopt the paradigm of
message passing [27, 55, 24, 14] to learn on graph-structured data. GNNs have found successful
applications in diverse domains such as chemistry [52], biology [12], high-energy physics [58], and
even contribute to the discovery of novel materials [42]. Despite their empirical success, the inherent
limitations of GNNs continue to be an active area of research, one of which is the challenge of
generalization. In deep neural networks (DNNs), memorization, the model’s ability to remember
individual training data points, and how it benefits generalization has been explored [21]. While
recent studies [60, 64, 3, 39] have focused on establishing generalization bounds and errors for
GNNs, investigation of GNN memorization is notably scarce. A primary reason for the gap in the
understanding of memorization for GNNs is the inherent difficulty in conceptualizing and defining
per-sample memorization. In other domains, such as computer vision, samples are independent from
each other, which allows for a straightforward definition of per-sample memorization.

However, in a node classification setting, the GNN operates on a single graph where nodes are all
inter-connected. This makes analyzing the model’s ability to memorize individual nodes challenging,
as it requires modeling a complex interplay of factors: the node’s own features, the features of its
neighbors, the information content of its label relative to its neighborhood [49], the overall graph
homophily level, and the GNN’s training dynamics.
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In light of these challenges, we propose a systematic framework for measuring memorization in node
classification. Our approach, called NCMemo (Node Classification Memorization), tackles
these challenges directly by characterizing memorization at the node level by taking into account
the feature and label information, at the graph level by studying memorization with respect to graph
homophily, and finally the training dynamics to understand how memorization affects the ability of
the GNNs to learn generalizable functions. Our framework is inspired by the leave-one-out definition
of memorization [21, 63]. The idea is to define memorization by comparing the predictive behavior
of models trained with and without specific data samples. A significant change in this behavior,
particularly an increased confidence when the sample is included in training, signals that the sample
has been memorized. This behavioral gap thus identifies nodes potentially prone to memorization.

Using our framework, we systematically investigate GNN memorization and its underlying mech-
anisms. Our study reveals several key insights: we find a novel inverse relationship between
memorization rate, i.e., the number of nodes that get memorized, and graph homophily, i.e., the nodes
in lower homophily graphs exhibit higher memorization. To explain the emergence of this memoriza-
tion behavior, we analyze the training dynamics of GNNs in the over-parametrized regime through
the lens of Neural Tangent Kernel [31, 4, 66]. We find that the tendency of GNNs to be excessively
reliant on the graph structure even when uninformative as is in the case of lower homophilic graphs,
results in a model memorizing node labels. Finally, we also investigate memorization at the node
level by proposing a novel metric, i.e., Label Disagreement Score (LDS), which helps identify why
certain nodes are susceptible to memorization. Overall, our analysis suggests that nodes with higher
label inconsistency in their feature space, i.e., atypical samples, experience higher memorization.
Finally, we show that memorized nodes are significantly more vulnerable to privacy leakage [59]
than non-memorized ones. Motivated by the link between graph homophily and memorization, we
explore graph rewiring [61] as a mitigation strategy. Specifically, following [54], we modify edges
based on the cosine similarity between connected nodes. This reduces memorization and, as we show,
the related privacy risks for memorized nodes, while preserving model performance.

Overall, we perform extensive experiments on various real-world datasets and semi-synthetic datasets
[68] with various GNN backbones such as GCN [37], GraphSAGE [28], and GATv2 [13] to confirm
our findings. In summary, we make the following contributions.

1. We introduce NCMemo, a label memorization framework inspired by the leave-one-out memoriza-
tion style [21] for the challenging context of semi-supervised node classification.

2. We reveal an interesting inverse relationship between the memorization rate and the graph ho-
mophily level: as the graph homophily increases (and consequently label informativeness [49]
increases), the memorization rate decreases significantly.

3. We explain memorization’s emergence by analyzing GNN training dynamics. We find that GNNs’
tendency to utilize graph structure, even when it’s unhelpful in low-homophily scenarios, directly
leads to memorization as they strive for low training error.

4. We propose the Label Disagreement Score (LDS) to characterize memorized nodes. This metric,
measuring local label-feature inconsistency, shows that nodes with higher LDS are significantly
more prone to memorization.

5. Finally, we demonstrate the privacy risks arising from memorization in GNNs and show that graph
rewiring as a promising initial strategy for mitigating this risk.

2 Background and Related Work

Limitations of Graph Neural Networks. Although GNNs are being used in various domains, our un-
derstanding of the mechanisms governing how GNNs learn and generalize is still in its infancy. More
recently, attention has shifted towards understanding GNN generalization. Approaches in this area
include studying generalization gaps [60, 64], leveraging mean-field theory to study generalization
errors [3], establishing convergence guarantees [36] and studying the interplay of generalization and
model expressivity [39]. Concurrently, other works analyze GNN training dynamics. For instance,
Mustafa et al. [44] show how standard weight initialization schemes such as Xavier [26] might
lead to poor gradient flow dynamics and consequently, diminished generalization performance in
Graph Attention Networks (GATs) [62, 13]. To address this, they propose an improved initialization
scheme for GATv2 [13] that enhances gradient flow and trainability. Furthermore, a recent work
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[66] shows the utility of Neural Tangent Kernel (NTK) [31, 4] to study GNNs in function space,
characterizing how optimization introduces an implicit graph structure bias which is encoded in the
notion of Kernel-Graph Alignment that aids learning generalizable functions.

Memorization in Deep Neural Networks. The phenomenon of memorization in deep learn-
ing—where models learn to remember specific training examples—has been extensively studied in
the context of deep neural networks (DNNs) [67, 5, 21, 6, 40, 11, 63, 8, 38]. It has been shown that
DNNs can memorize even random labels [67]. Different memorization metrics have been proposed
for supervised [21] and self-supervised learning models[63], showing that memorization in DNNs
is required for generalization. Memorization has also been associated with multiple risks to the
privacy of model’s training data [17, 16]. However, similar studies on data memorization in GNNs
are lacking. In this work, we aim to fill this gap.

Overfitting vs Memorization in GNNs. A work that thematically aligns with the goals of this paper
is [9] which studies how the GNNs’ inductive bias towards graph structure can be problematic. The
work demonstrates that GNNs may overfit to the graph structure even when ignoring it would yield
better solutions, leading to poor generalization, particularly in graph classification. Our work on
the other hand, focuses on the related but distinct phenomenon of memorization. Unlike overfitting
where the model shows poor generalization beyond the training set, memorization involves using
spurious signals to remember specific examples [38], which can be beneficial for generalization [21].

3 Our NCMemo Label Memorization Framework

In this section, we present our framework NCMemo, which is inspired by the leave-one-out definition
of memorization proposed by Feldman [21]. Let f : Rn → Rd be a GNN model trained on the
graph G = (X,A), where X is the node feature matrix and A is the adjacency matrix, using a GNN
training algorithm T (e.g., GCN [37]). Let S = {vi, yi}mi=1 be a labeled training dataset , where vi is
a node and yi its true label. Let f(vi) denotes a predicted probability of model f for the node vi. And
let vi be a target node from dataset S. Finally, let GNN models f ∈ F , g ∈ G be trained with a GNN
algorithm T on S and S \ v (dataset S with v removed), respectively. We calculate the memorization
score M for a target node vi as:

M(vi) = E
f∼T (S)

[Pr[f(vi) = yi]]− E
g∼T (S\vi)

[Pr[g(vi) = yi]]. (1)

Our objective is to measure the memorization for candidate nodes (vi). Since model f has seen the
candidate nodes as part of its training corpus, it is expected that f shows higher confidence in these
nodes than model g. We define the memorization rate (MR) as

MR(%) =
1

|S|
∑
vi∈S

I(M(vi) > τ)× 100, (2)

where I(·) is the indicator function and τ = 0.5 as a predefined threshold, chosen according to the
definition proposed in [21]. In the next section, we explain the mechanisms that drive GNN models
to memorize and also provide insights into emergence of memorization behavior.

4 Mechanisms of Memorization : Graph Structure to Training Dynamics

Extra nodes
from test
dataset

Figure 1: Data partition-
ing in our label memo-
rization framework.

In this section, we study the various factors that lead to memorization
in GNNs. Particularly, we identify three factors, namely the graph ho-
mophily, the training dynamics and the label disagreement at the node
level as the key contributors to memorization. To evaluate our label mem-
orization framework, we follow the setup in [63] to make the evaluation
computationally tractable by approximating the memorization metric over
multiple samples at once. Specifically, we divide the training set into
three disjoint partitions—shared nodes (SS), candidate nodes (SC) and
independent nodes (SI ). Subsequently, we train model f on SS ∪SC and
model g on SS ∪ SI . Figure 1 illustrates the data partitioning in our label
memorization framework.

We begin our evaluations by using a synthetic dataset benchmark, where we can control the specific
properties of the graphs, e.g., homophily level. The synthetic benchmark is the syn-cora dataset
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proposed in [68], which contains graphs with different homophily levels, the node features for the
graphs are assigned from a real-world graph such as Cora [41]. We choose five graphs with increasing
homophily levels h = {0.0, 0.3, 0.5, 0.7, 1.0}, where, for example syn-cora-h0.0 indicates a
synthetic graph with homophily level 0.0. Note that, low homophilous graphs are also called as
heterophilic graphs, where the connected nodes have different labels/features.

4.1 Highly Homophilous Graphs Exhibit Lower Memorization Rates
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Figure 2: Memorization Scores for SC on syn-cora: Comparison of memorization score across
syn-cora graphs with increasing homophily levels trained with GCN.

We train a three-layered GCN [37] on each graph of syn-cora and calculate the memorization scores
based on Equation (1). We plot the memorization scores for the candidate nodes (SC ) across different
graphs in Figure 2. We can see that the memorization score and memorization rate is higher for
heterophilic graphs than homophilic graphs.1 This result unveils an interesting connection between
the memorization rate, see Equation (2) and the graph homophily level (h), leading us to our first
novel insight. We formalize this in a proposition below.

Proposition 1 (Inverse relation between memorization rate and homophily.) The rate of memo-
rization is inversely proportional to the graph homophily level (h). As the homophily level increases
(↑), the memorization rate tends to zero (↓).

To investigate the claim made in this proposition, we plot the graph homophily level, the node label
informativeness (NLI) which measures the amount of information the neighboring nodes give to
predict a particular node’s label [49], and the memorization rate for the candidate nodes in Figure 3(a).
The results highlight that as the graph becomes highly homophilic (h = 1.0), the memorization
rate drops to 0. To see the relationship more clearly, in Figure 3(b) we plot only the homophily vs
memorization rate with a red line highlighting the trend. This confirms our hypothesis that one of the
mechanisms dictating the memorization behavior in GNNs is the graph homophily level.

4.2 GNNs’ Structural Bias and Kernel Alignment Dynamics Explains the Emergence of
Memorization

Naturally, the next question is how does memorization affect the ability of GNNs to learn a desirable
function that can generalize well? Yang et al. [66] analyze the training dynamics of GNNs through
the lens of Neural Tangent Kernel (NTK) [31, 4] in the over-parametrized regime and propose the
interplay of three alignment matrices, namely (1) the alignment between the graph structure (A) and
the optimal kernel matrix (Θ∗ = ȲȲT [19] see Definition 4) denoted by A(A,Θ∗), which encodes
the notion of homophily of the graph, (2) A(Θt,Θ

∗), the kernel-target alignment which induces
better generalization capabilities especially in learning kernel functions and finally (3) A(Θt,A), the
kernel-graph alignment which allows the NTK matrix to naturally incorporate the adjacency matrix
in a node level graph NTK formulation (NL-GNTK). For a l layered GNN with weights W and nodes
x, x̃ and the adjacency matrix A, the GNTK is given by

Θl
t(x, x̃;A) = ∇W f(x;A)T∇W f(x̃;A), (3)

where, Θl
t(x, x̃;A) is the NTK matrix that can be seen as a measure of similarity between nodes

x, x̃, guided by the adjacency matrix A. Following this line of reasoning, we can see our results

1In our generated syn-cora dataset, the number of nodes is the same for all generated graphs so it is
straightforward to compare the memorization rate between graphs of different homophily levels.
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in Proposition 1 as an inverse relation between A(A,Θ∗) and memorization rate. This connection
gives us a nice ingress to study the influence of memorization on the training dynamics of GNNs.
With this preliminary setup, we now introduce our results that connect memorization rate to the way
GNNs learn generalizable functions.

Proposition 2 (Implicit bias towards graph structure and memorization.) The optimization dy-
namics of GNNs on low-homophily graphs (A(A,Θ∗) ↓) demonstrate a tendency of the GNN model
to overfit to the graph structure. For a heterophilic graph (i.e., h = 0.0), as training progresses
we see that: (i) the memorization rate increases over epochs (↑); (ii) the kernel-target alignment
A(Θt,Θ

∗) remains low (↓), indicating poor generalization; yet (iii) the kernel-graph alignment
A(Θt,A) tends to increase (↑), suggesting the inherent capability of GNNs to leverage the graph
structure even when it is detrimental to the task.
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Figure 3: Inverse relationship between Memo-
rization Rate and Homophily. We show results
for GCN trained on the syn-cora dataset. As the
graph homophily increases, the memorization rate
decreases significantly.

We track the temporal dynamics of the NTK ma-
trix and its alignment with the other kernels as
proposed in [66] over training epochs on GCN
trained on the syn-cora dataset, similar to the
setup in Proposition 1. The results are shown in
Figure 4. We track the memorization rate of the
candidate nodes trained on model f across train-
ing epochs; correspondingly, we also track the
A(Θt,Θ

∗) and A(Θt,A) across epochs. The
lines are color coded by the homophily level.
Figure 4(a) reveals that the memorization rate
consistently increases with training epochs. This
rate is higher for low homophilic graphs. In Fig-
ure 4(b), we can observe that the kernel-graph
alignment tends to improve over time regardless
of the homophily level. This reinforces the idea
of GNNs leveraging the graph structure during
optimization regardless of the homophily level

(and thus, whether the graph structure is actually useful for the learning task). This alignment trend
contrasts with A(Θt,Θ

∗) behavior (Figure 4(c)), where lower homophily graphs show substantially
poorer alignment, confirming the model’s inability to learn generalizable functions in these settings.
We provide a simple proof in Appendix D.2 to show that a model that shows better kernel-graph
alignment cannot simultaneously also obtain better kernel-target alignment in low homophily settings.
The interplay of these evolving metrics suggests that the final state of these alignments will be indica-
tive of the overall memorization. To quantify this relationship at convergence, our next proposition
presents a correlation analysis between memorization rate and the final kernel matrix alignments.
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Figure 4: Evolution of the NTK matrix Θt and its alignment with the adjacency matrix A and
the optimal kernel Θ∗ during training for syn-cora, trained on GCN. (a) Memorization rate
is increasing during training, and it is higher for lower homophily graphs. (b) The kernel-graph
alignment A(Θt,A) improves during training regardless of the graph homophily level. (c) The
kernel-target alignment A(Θt,Θ

∗) is poor for low-homophilic graphs.
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Proposition 3 (Negative correlation between MR, A(Θt,Θ
∗) and A(Θt,A) alignments.) Let

f be the GNN model trained for node classification via gradient descent on a graph G = (X,A)
with labels Y, converging to final weights Wf . Let Θfinal ∈ Rn×n be the empirical Neural Tangent
Kernel (NTK) corresponding to Wf , and Θ∗ is the optimal kernel. As the kernel-target alignment
A(Θt,Θ

∗) improves, the memorization rate decreases. Similarly, as the kernel-graph alignment
A(Θt,A) improves, the memorization rate decreases.
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Figure 5: The inverse relationship
between MR and the A(Θfinal,Θ

∗),
A(Θfinal,A) alignments.

We measure the correlation between the memorization
rate and alignment matrices by setting Θt =Θfinal, i.e., we
take the converged GCN model f trained on the syn-cora
dataset and use the final weights to calculate the alignment
matrices A(Θfinal,A) and A(Θfinal,Θ

∗). The results are
presented in Figure 5, where we see a Pearson correlation
of r = −0.97 with respect to the kernel-target alignment
(A(Θfinal,Θ

∗)) and a correlation coefficient of r = −0.88
with respect to the kernel-graph alignment (A(Θfinal,A)).
As the kernel-target alignment A(Θfinal,Θ

∗) improves,
which suggests the model’s Θfinal is aligning well with the
optimal kernel Θ∗ leading to good generalization behavior,
the need for memorization is obviated. Similarly, when

the kernel-graph alignment A(Θfinal,A) improves, this suggests that the model is leveraging the
graph structure which is obviously useful (because of high homophily) for the learning task, and
consequently we see a decrease in the memorization rate.

4.3 Feature Space Label Inconsistency is a Strong Indicator of Node-Level Memorization

Our preceding analyses have established a crucial link between graph-level properties like homophily
and the overall memorization rate (Proposition 1). We have also analyzed the training dynamics
(Proposition 2, Proposition 3) to explain how GNNs’ reliance on graph structure can lead to mem-
orization. However, these perspectives do not fully address a fundamental question: why are only
specific nodes within a graph highly susceptible to being memorized, while others are learned in a
more generalizable manner? Drawing an analogy from DNNs where atypical examples are often
memorized, we hypothesize that, in GNNs, nodes exhibiting strong discordance between their labels
and their local feature-space context are particularly susceptible to memorization. We formalize this
intuition in a proposition below.

Proposition 4 (Higher label disagreement indicates susceptibility to memorization.) Nodes
that exhibit a high degree of label inconsistency with their neighbors in feature space are more likely
to be memorized by a GNN.

Table 1: LDS for SC on
syn-cora-h0.0.

MemNodes
LDS

Non-MemNodes
LDS

0.6270±0.0038 0.5187±0.0138

To quantify this label inconsistency, we introduce the Label Dis-
agreement Score (LDS). Let SC be the set of candidate nodes and
Strain_f = SS∪SC be the set of nodes used to train model f , whose fea-
tures form the search space for neighbors. For a target node vi ∈ SC

with features xi ∈ Rd and label yi, we identify its k-nearest neighbors
in feature space from Strain_f. The node vi itself is omitted from its
own neighborhood set Nk(vi); including it would artificially decrease the disagreement score (as
I[yi ̸= yi] = 0) without reflecting the actual inconsistency with its distinct surroundings. Therefore,
Nk(vi) contains k nodes vj ∈ Strain_f \ {vi} that minimize the L2 distance ∥xi − xj∥2. The LDS for
node vi is then defined as:

LDSk(vi) =
1

k

∑
vj∈Nk(vi)

I[yj ̸= yi] (4)

where I[·] is the indicator function, and k is a chosen hyperparameter (e.g., k = 3). The LDS
intuitively measures the local anomaly in the label-feature manifold. If a node’s features place it
close to neighbors with predominantly different labels, it presents a conflicting signal to the GNN.
To minimize training loss on such a node, the GNN might resort to memorizing it rather than
learning a feature transformation that adequately classifies both this target node and its disagreeing
neighbors under a shared rule. Following our experimental setup, in Table 1, we measure the LDS for
memorized versus non-memorized nodes within the candidate set of the syn-cora-h0.0 dataset,
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using a GCN model and averaging over three random seeds. We consistently observe that memorized
nodes exhibit, on average, significantly higher LDS than non-memorized nodes. This finding supports
our hypothesis that strong conflicting signals arising from high label inconsistency in a node’s
feature-space neighborhood make that node particularly vulnerable to being memorized by the GNN.

5 NCMemo on Real-World Datasets

Experimental Setup. To further validate our propositions and insights in Section 4, we conduct
experiments on real-world datasets. We use GCN [37], GraphSAGE [29] and GATv2 [13] with 3
layers as our backbone GNN models. We experiment on the following real-world datasets: Cora
[41], Citeseer [56], Pubmed [45], which are homophilic datasets. Cornell, Texas, Wisconsin [48],
Chameleon, Squirrel [53], and Actor, which are heterophilic datasets. We divide our datasets into
60%/20%/20% as training, testing, and validation sets, respectively. Out of the 60% training set S,
we further randomly divide the datasets into three disjoint subsets with ratios SS = 50%, SC = 25%,
SI = 25%. We instantiate two GNN models f and g, which are trained on SS ∪ SC and SS ∪ SI ,
respectively. We train both models on three random seeds. We choose the best model based on
the validation accuracy to calculate the memorization scores for the distribution plots, to ensure
our memorization results are not an artifact of poor training. Based on Equation (1), the resulting
memorization score ranges between -1 and 1, where 0 means no memorization, 1 means the strongest
memorization phenomenon on model f , and -1 denotes the strongest memorization on g.

5.1 Memorization Results on Real-World Datasets

Inverse relation between memorization rate and homophily on real-world datasets. Figure 6
shows the distribution of memorization scores for candidate nodes on four real-world datasets trained
on a GCN, revealing a similar trend as in Figure 2. That is, candidate nodes of homophilic graphs such
as Cora and Citeseer show lower memorization scores than heterophilic graphs such as Chameleon
and Squirrel. We also report the average memorization scores and memorization rate along with
additional results for different GNN models in Appendix F.
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(c) Chameleon.
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Figure 6: Memorization scores of SC for Cora, Citeseer, Chameleon, and Squirrel datasets. The
candidate nodes of homophilic graphs exhibit lower memorization scores than heterophilic graphs.
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Evolution of alignment matrices on real-world graphs. We
also track the evolution of the different alignment matrices on
9 real-world graphs trained on GCN in Figure 8. We can ob-
serve in Figure 8(a) that our insights from the synthetic dataset
holds true for real-world settings: homophilic graphs such
as Cora, Citeseer, and Pubmed exhibit lower memorization
compared to the heterophilic graphs like Cornell, Texas, Wis-
consin, Chameleon, Squirrel, and Actor. Correspondingly, in
Figure 8(b), we can see the kernel-graph alignment A(Θt,A)
consistently improves over training epochs for all the datasets,
regardless of the homophily level, highlighting the implicit
bias of GNNs [66]; and Figure 8(c) shows that the homophilic
graphs have higher kernel-target alignment (A(Θt,Θ

∗)) com-
pared to heterophilic graphs and thus lead to better general-
ization. These real-world results align well with the trends
described in Proposition 2.
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Figure 8: Evolution of the NTK matrix Θt and its alignment with the adjacency matrix A
and the optimal kernel Θ∗ for real-world graphs trained on GCN. (a) Memorization rate is
increasing during training, and it is higher for lower homophily graphs. (b) The kernel-graph
alignment A(Θt,A) improves during training regardless of the graph homophily level. (c) The
kernel-target alignment A(Θt,Θ

∗) is poor for low-homophilic graphs.

Moreover, our findings complement recent work demonstrating that GNNs may overfit to graph
structure [9]. Our research distinguishes label memorization as a separate phenomenon. Specifically,
our analysis of training dynamics (Proposition 2) shows that GNNs’ inherent reliance on graph
structure (increasing A(Θt,A)), particularly in low-homophily settings where this structure is
uninformative for label prediction, can directly compel the model to memorize individual node labels
to minimize training loss. This memorization, driven by the need to fit specific labels, is distinct from
the broader concept of structural overfitting; while both may involve a potentially suboptimal reliance
on graph structure, the latter concerns the model’s primary choice of information source, whereas
memorization, as we characterize it, details how specific training instances are fit when faced with
conflicting or uninformative signals.

Correlation between MR, A(Θfinal,Θ
∗) and A(Θfinal,A) alignments on real-world graphs. We

also validate Proposition 3 using 8 real-world datasets 2. In Figure 7, we plot the Pearson correlation
coefficients between the memorization rate and two alignments (i.e.,A(Θt,Θ

∗) and A(Θt,A)). We
can observe a negative correlation of r = −0.79 between memorization rate and A(Θt,Θ

∗), and a
slightly weaker but nevertheless negative correlation of r = −0.58 between memorization rate and
A(Θt,A). These findings indicate that as the kernel-target or kernel-graph alignment improves, the
memorization rate tends to decrease. We attribute the relatively weaker correlation with A(Θt,A) to
the fact that the actual homophily values of the datasets are highly varied (See Table 19 for the actual
values). Nonetheless, the overall trend supports our Proposition 3 on real-world datasets as well.

Table 2: Label Disagreement Scores for memorized nodes (MemNodes) vs non-memorized
nodes (Non-MemNodes) in the SC , trained on GCN averaged over 3 random seeds. Memorized
nodes have a higher LDS than the non-memorized nodes.

Dataset MemNodes LDS Non-MemNodes LDS p-value (< 0.01) Effect Size

Cora 0.8016±0.0186 0.5754±0.0010 0.0024 14.39
Citeseer 0.7985±0.0114 0.6192±0.0040 0.0029 13.13

Chameleon 0.8433±0.0006 0.7362±0.0016 0.0000 113.68
Squirrel 0.8617±0.0032 0.7675±0.0040 0.0020 15.98

Label Disagreement Score for Real-World Datasets. We calculate LDS for both memorized and
non-memorized nodes on the candidate set (SC) averaged over 3 random seeds for Cora, Citeseer,
Chameleon and Squirrel datasets in Table 2 along with their statistical significance. From the table,
we can see that the memorized nodes have a higher label disagreement scores compared to the
non-memorized nodes and this trend is consistent across both homophilic and heterophilic graphs.
Thus, we can use this metric to understand why only certain nodes get memorized, a node belonging
to a neighborhood where the labels strongly give conflicting signal for the GNN aggregation step
ends up getting memorized by the model (More results on LDS in Appendix G). In the next section,

2We omit Pubmed from this analysis since it exhibits strong resistance to memorization, see Table 6 and
Appendix G for discussion.
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we discuss graph rewiring as a possible strategy to decrease memorization in GNNs, further we also
discuss the implications of memorization to privacy risk.

6 Privacy Risks and the Real-World Impact of Memorization
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Figure 9: MIA risk of GNNs trained on original
syn-cora (left) and rewired syn-cora (right).
h0.0 (1.0) means homophily level 0.0 (1.0).

We finally turn to the real-world impact of mem-
orization. In DNNs, memorization has often
been linked to privacy risks for the memorized
data points, e.g., [15, 18]. In this section, we
highlight that the same holds for GNNs. Based
on our findings from the previous sections, we
explore graph rewiring as a mitigation strategy.
Our findings highlight the effectiveness of this
approach for mitigating memorization and re-
ducing the associated privacy risks while main-
taining high model performance.

Analyzing Privacy Risks. Membership inference attacks (MIAs) [59] are a standard tool to assess
privacy leakage in machine learning. In these attacks, an adversary aims at inferring whether a
certain data point was included in the training set of a model. We rely on the Likelihood Ratio Attack
(LiRA) [16] to assess the privacy risk in our GNNs. Our results for syn-cora are presented in
Figure 9 (left), where we measure the Area Under Curve (AUC) to characterize the vulnerability of
the GNN model. We also present the TPR (True Positive Rate) at 1% FPR (False Positive Rate) in
Table 14, Appendix H. We observe that, nodes in low homophily graphs, such as syn-cora-h0.0,
which exhibit high memorization, are most susceptible to MIAs with an AUC value of 0.936, whereas
nodes in a highly homophilic graph, e.g., syn-cora-h1.0, show a value of 0.538, close to random
guessing. Our results indicate that nodes in lower homophily graphs, have a significant higher risk
of leaking from trained GNN models due to memorization. This prompts the question How can we
reduce memorization and its resulting privacy risks?.

Graph Rewiring to Prevent Privacy Leakage. Our Proposition 1 suggests that one of the key
contributors to memorization is the graph homophily, which means it should be possible to con-
trol the memorization by influencing the homophily level. However, since calculating homophily
requires access to all the node labels, it cannot be directly optimized for. Therefore, we adopt a
feature similarity-based graph rewiring framework proposed in [54], which aims to maximize the
feature similarity (based on cosine similarity) between nodes by adding or deleting edges, indirectly
influencing the homophily level. See Appendix H for a full description of the approach. It is assumed
that after applying the rewiring method, the graph’s homophily level will increase, leading to less
memorization and MIA risk.

Evaluation. To validate this hypothesis, we rewire the syn-cora graphs by adding a specific number
of edges to the graph. The homophily level of the rewired syn-cora graphs indeed increases. We
then train new GNN models on the rewired graphs and analyze the memorization behavior of those
models using NCMemo. The detailed implementation setups and results are presented in Appendix H.
We also perform the LiRA attack again on those models. Our results in Figure 9 (right) show that
the MIA risk is significantly reduced compared to the models trained on the original graphs, i.e., the
AUC scores have dramatically dropped for all syn-cora graphs. The drop is most significant for
the low homophily graphs (e.g., syn-cora-h0.0), where the AUC scores have dropped by more
than 20%. This confirms our hypothesis that graph rewiring can be a simple memorization mitigation
strategy to prevent the real-world privacy risks for memorized samples.

7 Conclusions

In this work, we propose NCMemo, the first framework to quantify label memorization in GNNs. We
identify multiple graph-level and node-level characteristics that influence memorization, including
graph homophily and node feature consistency. We also measure the real-world privacy risks that
arise through GNN memorization. We evaluate graph rewiring as a mitigation strategy and show
that it can reduce memorization and the associated privacy risks. Overall, our work advances the
understanding of GNN learning and supports their more privacy-preserving deployment.
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A Limitations and Future Work

Limitations. Our work proposes an end-to-end framework to study the memorization phenomenon in
semi-supervised node classification of GNNs, discusses key factors that influence the memorization,
and also discusses the practical implications (i.e., privacy risks) of memorization in GNNs, for which
we consequently provide an initial strategy to mitigate the memorization. However our study has
certain limitations that can open avenues for future research. For instance, the graph rewiring strategy
might be too simple to be effective on real-world graphs to mitigate memorization. Our proposed
Label Disagreement Score (LDS) could be less effective against heterophilic datasets with highly
non-uniform label/feature distribution, e.g., Actor.

Future work. Studying memorization for other tasks such as link prediction and graph classification
can be an interesting future work. Future work can also focus on understanding the role of over-
squashing [2] and over-smoothing [35] on memorization. In our work, we have primarily analyzed
the training dynamics of GCN, future work could also extend this analysis to GATs [62, 13] and
Graph Transformers [51] since the attention mechanism can have non-trivial effects on memorization.

B Broad Impact

Regarding the broad impacts of our work, we propose a new framework to study the memorization
phenomenon in GNNs, which is a critical issue in this field. Our work provides a comprehensive
understanding of the factors that contribute to memorization in GNNs, including the role of homophily,
label informativeness, kernel alignment, and feature space label inconsistency. We also discuss
the implications of memorization for privacy risks. Our findings can help researchers and model
developers better understand the memorization phenomenon in GNNs, and encourage the development
of more robust and generalizable GNN architectures.

C Definitions

In this section we provide definitions of all the metrics we have used.

Definition 1 (Edge Homophily) The edge homophily ratio is defined as the fraction of edges in a
graph that connect nodes of the same class and is given by

h =
|{(u, v) : (u, v) ∈ E ∧ yu = yv}|

|E|
(5)

This measure is used to generate the synthetic datasets in [68].

Definition 2 (Node Label Informativeness [49]) Given an edge (u, v) sampled from E and let yu
and yv be the respective class labels. The label informativeness gives a measure of predicting the
label yu, given we know the label yv and is encoded by the normalized mutual information:

NLI =
H(yu)−H(yu|yv)

H(yu)
(6)

where H(yu) is the entropy that tells us how difficult it would be to predict the label u without
knowing yv . A higher label informativeness implies a node’s neighborhood gives enough information
to predict the label. The label informativeness is computed for all pairs of edges and labels to give a
final graph level score.

Definition 3 (Homophily in terms of alignment [66]) The notion of homophily can also be en-
coded in the form of alignment between the adjacency matrix of the graph A and the optimal kernel
Θ∗ [19], i.e., A(A,Θ∗) measures if two connected nodes have the same labels.

Definition 4 (Optimal kernel (Θ∗) and kernel alignment) The optimal kernel Θ∗ proposed in
[19] is defined as Θ∗ = ȲȲT and it measures how similar two instances of data points are.
Further, we can define a similarity metric that measures the alignment between two kernels K1 and
K2 as
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A(K1,K2) =
⟨K1,K2⟩F

||K1||F ||K2||F
(7)

This metric can be seen as a generalization of the cosine similarity applied to matrices and it satisfies
the triangle inequality.

D Proof for Proposition 2

In this section, we provide a simple proof to support our empirical results in Proposition 2. We
showed that one of the main reasons GNNs exhibit memorization is their failure to reconcile the
conflicting signals induced by the training dynamics of GNNs, i.e., the implicit tendency to align
the Θt with the A, even when the graph structure is uninformative (i.e., exhibits low A(A,Θ∗)) and
can be detrimental to the learning task, while, the overall training objective remains minimizing the
training loss. We adopt the terminologies from [66].

D.1 Setup and Assumptions

We consider a GNN trained for node classification on graph G = (V, E) with propagation matrix
A. Let Dtrain = {(vi, yi)}vi∈Vtrain be the labeled training nodes (nl = |Vtrain|). Let Ft ∈ Rnl be
predictions at time t and Y ∈ Rnl be true labels. We minimize the empirical risk L(Ft,Y) =
1
2 ||Ft −Y||2.

Assumption 1 (GNN training dynamics increase kernel-graph alignment) The optimization
process for GNNs implicitly leverages the graph structure A, such that A(Θt,A) tends to increase
during training.

Assumption 2 (Low homophily) In low homophily settings, alignment between the A and Θ∗ is
low.

D.2 Low Homophily (A(A,Θ∗)) Implies Low Kernel-Target Alignment (A(Θt,Θ
∗))

The alignment between two kernels [19, 66] K1 and K2 can be characterized by the cosine similarity
as shown in Equation 7. Let ϕ(K1,K2) = arccos(A(K1,K2)) denote the angle between the kernel
matrices. Our proof relies on the simple triangle inequality and a geometric approach to show that,
a GNN that aligns its adjacency matrix A with the neural tangent kernel Θt cannot simultaneously
also align well with the Θ∗ and thus leads to memorization.

Proof:

We define three angles ϵ, δ and γ as the angles between the matrices A(Θt,A), A(A,Θ∗) and
A(Θt,Θ

∗) respectively, that is

• ϵ = arccos(A(Θt,A)) be the angle between Θt and A.

• δ = arccos(A(A,Θ∗)) be the angle between A and Θ∗.

• γ = arccos(A(Θt,Θ
∗)) be the angle between Θt and Θ∗.

Using the triangle inequality on the angles we write two inequalities as

γ ≤ ϵ+ δ (8)

δ ≤ ϵ+ γ (9)

Rearranging 9 to establish a lower bound on γ:

γ ≥ δ − ϵ (10)

Analyzing the inequality 10 in light of our assumptions we get
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1. Based on Assumption 1, a high kernel-graph alignment implies, the angle ϵ between A and Θt
should be small (ideally, 0◦), from a geometrical perspective we can think of this as two vectors
pointing in the same direction3

2. Based on Assumption 2, in low homophily settings, the angle δ between A and Θ∗ should be
large (e.g, 90◦)

Therefore, the term δ − ϵ represents a large angle minus a small angle, which is still a large angle
(quantitatively close to δ). Inequality 10 states that γ must be greater than or equal to this large angle
(δ − ϵ). This forces γ itself to be large.

A large angle γ between the kernel Θt and the optimal kernel Θ∗ signifies a poor alignment between
them. Since γ = arccos(A(Θt,Θ

∗)) and the arccos function is monotonically decreasing on its
domain [−1, 1], a large angle γ (specifically, γ ≥ δ − ϵ, where δ − ϵ is close to 90◦ or more)
necessarily implies that the alignment value A(Θt,Θ

∗) must be low (close to 0 or negative).

Combining the upper bound equation 8 and the lower bound equation 10, we get δ − ϵ ≤ γ ≤ δ + ϵ.
This confirms that when ϵ is small, γ is tightly constrained around the large value δ (γ ≈ δ).

Therefore, the geometric constraints imposed by the triangle inequality demonstrate that high kernel-
graph alignment (small ϵ) under low homophily (large δ) forces the angle γ between the learned
kernel and the optimal kernel to be large, resulting in low kernel-target alignment (A(Θt,Θ

∗)).

□

We illustrate our proof through a conceptual diagram in Figure 10. We visualize a hypothetical loss
landscape of a GNN model (e.g., GCN trained on syn-cora as in Proposition 2) in a 2D contour plot.
The blue color represents low loss regions with wider basins, indicating global minima that favor
generalization. In contrast, the narrower, red regions correspond to local minima that may achieve
low training loss but typically lead to memorization and poor test performance. We visualize the
alignment matrices as vectors in this 2D space. We get two regimes:

Low homophily regime - We know that GNNs possess an implicit bias to leverage the graph structure
during optimization, leading to kernel-graph alignment, A(Θt,A) [66]. This tendency is further
supported by our experiments in Proposition 2, which demonstrate that kernel-graph alignment
increases as training progresses. However, whether such alignment benefits the model depends
critically on the graph homophily level, which is encoded in the alignment between the adjacency
matrix A and the optimal kernel Θ∗, denoted as A(A,Θ∗). Both our geometrical proof and empirical
results suggest that in low homophily regimes, the model’s tendency to align its NTK matrix with the
adjacency matrix becomes problematic. Even when the graph structure contains little task-relevant
information, this alignment bias pulls the model away from the optimal kernel Θ∗, which would
otherwise guide the model toward better generalization. We illustrate this phenomenon conceptually
in Figure 10(a), where we visualize the adjacency matrix A, the NTK kernel matrix Θt, and the
optimal kernel matrix Θ∗ as 1D vectors in a hypothetical 2D loss landscape, represented in red, green,
and blue colors, respectively. In this visualization, the NTK kernel matrix Θt aligns closely with A,
as indicated by the small angle ϵ between them (see Appendix D.2), yet it points in a direction far
from the Θ∗, which represents a generalization minimum. The purple trajectory traces the path the
model actually follows during optimization, resulting in a biased solution that achieves low training
loss through memorization but generalizes poorly to unseen data.

High homophily regime - In contrast, within the high homophily regime, the increasing kernel-graph
alignment A(Θt,A), i.e., the model’s tendency to leverage the graph structure, becomes highly
beneficial for the learning task. We demonstrate this in Figure 10(b), where, as before, we visualize
the adjacency matrix A, the NTK kernel matrix Θt, and the optimal kernel matrix Θ∗ as 1D vectors
in a hypothetical 2D loss landscape, shown in red, green, and blue colors, respectively. In this
scenario, we observe that the alignment between Θt and the adjacency matrix A does not misguide
the model away from the direction of the optimal kernel Θ∗. Instead, this alignment actually serves
as a beneficial guide that helps the model toward a solution close to the optimal kernel. Consequently,
the model converges to a solution that generalizes well, performing well on both training and testing
data.

3Note that, these are alignment matrices and not simple vectors, besides, these kernels exist in high di-
mensional space which is not feasible to visualize. Our intent here is to provide an intuitive picture of how
memorization emerges in GNNs.
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Figure 10: We illustrate the emergence of memorization in this conceptual diagram. We visualize
the alignment matrices as 1D vectors on a hypothetical 2D loss landscape of some GNN model, for
instance a GCN trained on syn-cora dataset as in Proposition 2. In low homophily regimes, the
model’s tendency to align the A with Θt (kernel-graph alignment) results in the model deviating
away from the optimal kernel Θ∗ resulting in memorization. Contrarily, in high homophily regimes,
the kernel-graph alignment does not induce an opposing behavior with respect to the optimal kernel,
leading to good generalization.

D.3 Notations

Symbol Description
G = (A,X) A graph with an adjacency matrix A and a node feature matrix X .
D The true, underlying data distribution over node-label pairs (v, y).
Dtrain The training set, a collection of n labeled nodes {(vi, yi)}ni=1 sampled

from D.
vi, vj A specific node in the graph, indexed by i or j.
yi, yj The ground-truth label for node vi or vj .
T The learning algorithm (e.g., GNN training via gradient descent).
f A predictive function or model learned by the algorithm T .
fDtrain The specific model function learned by algorithm A when trained on

the set Dtrain.
fDtrain\{vi} The leave-one-out model, trained on Dtrain after excluding the i-th

sample (vi, yi).
P[·] Denotes the probability of an event. The subscript indicates the source

of randomness.
E[[]·] Denotes the expectation of a random variable.
mem(T ,Dtrain, i) The memorization score for the i-th sample in the training set Dtrain.
Egen(f) The generalization error of a model f , its expected error on the true

distribution D.
Etrain(f,Dtrain) The empirical training error of a model f on the specific set Dtrain.

D.4 Detailed Proof for Proposition 2

In this section, we leverage the results (Lemma 4.2 and 4.3) proposed by Feldman [21] to highlight
two regimes of learning conditioned on the graph homophily.
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D.4.1 High-homophily regime

GNNs have an implicit bias to leverage the graph structure during optimization. When the input
graph has high homophily, the GNN’s inductive bias to aggregate messages from the neighbors aligns
well with the data structure (graph whose neighboring nodes have similar labels) in such cases a
GNN can obtain good generalization performance.

Lemma 1 (Lemma 4.2 Feldman [21]) For a given dataset S, a learning algorithm T and a distribu-
tion P over the input-output pair X × Y , the memorization score is related to the generalization gap
as follows

1

n
ES∼Pn

∑
i∈[n]

mem(T , S, i)

 = E[Etrain]− E[Egen] (11)

In high-homophily graphs, the generalization gap is low, this is also supported by our extensive
experiments on synthetic graphs and real-world graphs and also our NTK analysis. Thus, we have

E[Etrain]− E[Egen] ≈ 0 =⇒ mem(T , S, i) ≈ 0 (12)

In practice, our experiments reveal even in high-homophily graphs, a small number of nodes are
memorized, however the cost of not fitting these nodes does not incur a high penalty on the training
error [21].

D.4.2 Low-homophily regime

Explaining memorization in this regime forms a central theme of our work. As seen earlier in
Proposition 2, in low-homophily graphs the graph structure is not informative but the tendency of the
GNNs to still leverage the graph structure results in a model that has to memorize to achieve zero
training loss. This is explained by Feldman [21]’s Lemma 4.3 which we adapt to our GNN setting as
follows

Lemma 2 (Lemma 4.3, Feldman [21]) The empirical error on a high LDS node vi is related to
the leave-one-out error. For an atypical node vi with a high Label Disagreement Score (LDS), the
model trained without it, fS\{vi}, relies on an uninformative graph structure, resulting in a high
leave-one-out error. The relation between leave-one-out-error, memorization score and the model’s
empirical error is given by

Pf∼T (S)[f(vi) ̸= yi] = Pf∼A(S\{vi})[f(vi) ̸= yi]− mem(T ,S, i) (13)

where, the leave-one-out-error is high because the model needs to see the label of the node vi with
high LDS to correctly predict it.

Pf∼T (S\{vi}[f(vi) ̸= yi] → 1 (14)

However, the overall training objective strives to achieve zero empirical error

Pf∼T (S)[f(vi) ̸= yi] = 0 (15)

Substituting Equations 14 and 15 in 13 we get,

0 ≈ 1− mem(T ,S, i) =⇒ mem(T ,S, i) ≈ 1 (16)

Thus, in low-homophily settings the atypical nodes characterized by our Label Disagreement Score
need to be memorized by the model in order to achieve zero training loss.
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E GCMemo —Finding Memorization in Graph Classification

Our proposed framework that successfully identifies memorization in node classification setting
can also be extended to a graph classification. Here, the goal is to assess if the model memorizes
candidate graphs. Concretely, we change the dataset S to contain graphs rather than nodes, and
measure memorization as the difference on expected behavior between models f on S and models g
trained on S \ gri, where gri is the graph whose memorization we want to measure. We perform
experiments on 4 graph classification datasets, namely the MUTAG, AIDS, BZR and COX2 [43] ,
using a GCN backbone. The data split strategy is similar to the one presented in the paper, where
we divide the graph dataset into 60%/20%/20% as training/testing/validation sets, respectively.
Among the 60% training set, we further randomly divide the datasets into three disjoint subsets, i.e.,
shared graphs SS , candidate graphs SC , and independent graphs SI , with ratios 50%, 25% and 25%,
respectively. The results are presented in Table 3.

Initial observations suggest that the GCN is able to learn without memorizing any graph, we hypothe-
size that this is because there are no outlier/atypical graphs in dataset corpus. However, to understand
if our proposed framework can successfully detect memorization in case there were any atypical
graphs, we conduct another experiment, where we add Gaussian noise to the node features of all the
nodes in the candidate graphs and calculate the memorization scores.

Table 3: Average memorization score and memorization rate of candidate graphs with a GCN
backbone.

Datasets Avg
MemScore MR(%)

MUTAG 0.0011±0.0045 0
AIDS 0.0767±0.0260 0
BZR -0.0096±0.0067 0

COX2 0.0068±0.0241 0

E.1 Feature Noise and Memorization in Graph Classification

We add Gaussian noise with σ = {0.1, 0.3, 0.5, 0.7, 0.9} to the node features of all the nodes of
the candidate graphs and measure memorization. The results are presented in Table 4. We can
observe that as we add noise to the node features, the graphs become more atypical and our proposed
framework can easily detect memorization in this case. For dataset such as MUTAG there seems to
be a monotonous increase in memorization rate and average memorization score as the noise level
is increased but such trend is not obvious in other datasets. While more future work is necessary to
understand the mechanisms driving memorization in graph classification settings, we believe this
initial direction is a promising one.

Table 4: Average memorization score and memorization rate of candidate graphs with noise added on
a GCN backbone.

MUTAG AIDS BZR COX2
Noise
Level

Avg
MemScore

MR
(%)

Avg
MemScore

MR
(%)

Avg
MemScore

MR
(%)

Avg
MemScore

MR
(%)

0.1 0.0767±0.0260 2.2±1.9 0.0767±0.0260 0 0.1993±0.0137 9.2±3.1 0.1939±0.0116 2.6±1.3
0.3 0.2352±0.0744 18.3±9.9 0.1351±0.0298 6.5±3.2 0.2965±0.0064 27.7±0.0 0.2326±0.0145 21.5±1.5
0.5 0.3419±0.0420 33.3±3.7 0.2086±0.0295 13.7±1.2 0.2091±0.0109 15.9±0.9 0.2856±0.0012 28.9±0.0
0.7 0.3680±0.0239 39.8±4.9 0.2465±0.0087 18.8±1.4 0.1790±0.0010 18.5±0.0 0.2237±0.0101 23.7±0.0
0.9 0.4544±0.0302 46.2±6.7 0.2367±0.0346 17.6±2.2 0.1998±0.0006 20.0±0.0 0.1838±0.0092 18.4±0.0

F Additional Results on Memorization Scores

In this section, we present additional memorization results on both the real-world and synthetic
datasets.
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F.1 Our Memorization Score is Well Behaved

Synthetic dataset In Figure 11, we plot the memorization scores vs frequency for syn-cora across
the data categories (SC , SS , SI , SE). We can see that the candidate nodes show higher memorization
scores compared to the other category nodes such as SS or SE . We also present the average
memorization scores (with 95% confidence interval (CI)) and the memorization rate of SC in Table 5
for syn-cora dataset, trained on GCN model.
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Figure 11: Distribution of Memorization Scores on syn-cora: Comparison of memorization rates
across node categories for syn-cora graphs with increasing homophily levels trained with GCN.
GNNs exhibits memorization behavior, i.e., the memorization scores are higher (lower) for SC (SI )
compared to SS or SE .

Table 5: Memorization score (MemScore) and Memorization rate (MR) for the candidate nodes
in syn-cora dataset averaged over 3 random seeds on a GCN. Heterophilic graphs have a higher
memorization score and rate than homophilic graphs.

Dataset Avg
MemScore

MR
(%)

syn-cora-h0.0 0.7091±0.0168 83.63±1.82
syn-cora-h0.3 0.5573±0.0047 63.96±1.19
syn-cora-h0.5 0.4106±0.0126 45.95±1.62
syn-cora-h0.7 0.2616±0.0070 25.98±1.45
syn-cora-h1.0 0.0021±0.0005 0.00±0.00

Real-world graphs. Similarly, Figure 12, Figure 13, and Figure 14 show the distribution of memo-
rization scores for nine real-world datasets trained on GCN, GATv2, and GraphSAGE, respectively.
It can be observed that for most of graphs, the nodes in SC(SI) have higher (lower) memoriza-
tion scores than nodes in SE and SS . We also present the average memorization scores and the
memorization rate of SC in Table 6 for 9 datasets trained on different GNN models. We observe
that heterophilic graphs, such as Cornell, Texas, Wisconsin, Chameleon, Squirrel and Actor, have a
higher memorization score and memorization rate than the homophilic graphs, i.e., Cora, Citeseer
and Pubmed, which is consistent with our Proposition 1. We can observe from Table 6 that Pubmed
shows the most resistance to memorization as it has, a very low average memorization score. We
can explain this behavior by invoking our Label Disagreement Score reported in Table 11, where we
can see the LDS values for both memorized and non-memorized nodes are very similar, indicating
that Pubmed has a highly informative neighborhood that can be leveraged by the model to learn
generalizable patterns. To formally verify that nodes in SC (SI ) have statistically significantly higher
(lower) memorization scores than nodes in SS and SE , we also conduct a t-test on the memorization
scores of all nodes in each category. The details of which are outlined in the Appendix F.2.

F.2 Statistical Significance of Memorization Scores

In this section, we present the results for t-tests conducted on the memorization scores obtained
from training GCN on real-world datasets in Table 7. We test the null hypothesis H0 := M(SC) ≤
M(SS). Rejecting the null hypothesis indicates that the memorization scores of nodes in SC are
significantly higher than those in SS . Our results reject H0 with a p-value < 0.01 and a large effect
size (i.e., more than 0.5) for all datasets, indicating that the observed difference in the memorization
scores of SC and SE is statistically and practically significant. We also apply the same t-test for all
data subsets. The results confirm that SC (SI ) is significantly more (less) memorized by the GNN
model than SS and SE .
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(a) Cora.
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(c) Pubmed.
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(d) Cornell.
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(e) Texas.
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(f) Wisconsin.
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(g) Chameleon.
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(h) Squirrel.
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(i) Actor.

Figure 12: Distribution of memorization scores for each node category SS , SC , SI , and SE , on 9
real-world datasets, trained on the GCN model.

F.3 Larger Datasets

The leave-one-out memorization [21] is theoretically well-founded and provides a precise notion
of per-sample-level memorization. While the ideal form requires training multiple models, in our
work, we approximate it efficiently: Our method only requires a single additional trained model and
evaluates the effect for simultaneous removal of batches of nodes (25% of training nodes). This keeps
the overhead minimal while still aligning closely with the theoretical definition. We present additional
results on larger datasets such as Photo, Physics, Computer [57] and ogb-arxiv [30] datasets in Table 8.
We can observe that our proposed framework scales well to large graphs and the datasets exhibit low
memorization rates as they are highly homophilic which aligns with our Proposition 1.

F.4 Graph Transformer

We also experiment with a Graph Transformer (GT), we use the architecture proposed in [50] with
following modifications: we use 2 attention heads and 1-layer GT (Input → Linear Projection →
[Attention + FFN Block] → Output Linear). The results are presented in Table 9. A caveat of
applying our framework to study memorization in Graph Transformers is that it is hard to analyze the
non-trivial effects the attention mechanism can have on memorization. Further, since a Transformer
architecture is more general purpose than a GNN, it is unclear if a transformer shows an implicit
bias to leverage the graph structure and a lack of NTK formulation for Graph Transformers makes it
difficult to explain the emergence of memorization.
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(a) Cora.
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(b) Citeseer.
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(c) Pubmed.
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(d) Cornell.
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(e) Texas.
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(f) Wisconsin.
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(g) Chameleon.
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(h) Squirrel.
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Figure 13: Distribution of memorization scores for each node category SS , SC , SI , and SE , on 9
real-world datasets, trained on the GATv2 model.

F.5 2-hop aggregator methods

To analyze whether our findings on memorization are robust to the GNN’s receptive field size, or if
they are merely an artifact of a 1-hop message passing scheme, we conducted additional experiments
with another GNN variant called Simplified Graph Convolution (SGC) [65], which is designed to
analyze the impact of multi-hop neighborhoods by propagating features over a specified number of
hops, K. We ran our experiments using SGC with K = 2, thereby allowing the model to aggregate
information directly from the 2-hop neighborhood and present results on 4 datasets in the following
table.

G Label Disagreement Score

Choice of k. An important hyperparameter for calculating the LDS is the value of k, in our case
we set this value to 3, here the idea is to mimic the k hop aggregation step of the GNN model. By
setting k = 3, we are trying to trace how the 3-hop neighborhood of the graph looks like for a GNN
model that is trying to aggregate information, and if the label and feature distributions are uniform or
do they have large surprises that can induce memorization. Setting a smaller k value allows us to
analyze the local neighborhood anomalies. It is possible to also calculate the LDS by setting higher k
values such as 5, 7, 10, but the GNN models we use in practice do not have large receptive fields to
aggregate information from higher order neighborhoods, unless they are explicitly designed to do so
in cases like [47, 22, 20].

Additional results. In Table 11, we present the LDS for remaining datasets trained on GCN
model. In Table 12 and Table 13 we present the LDS for datasets trained on GraphSAGE and
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(a) Cora.
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(b) Citeseer.
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(c) Pubmed.
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(d) Cornell.
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(e) Texas.
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(f) Wisconsin.
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(g) Chameleon.
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(h) Squirrel.
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Figure 14: Distribution of memorization scores for each node category SS , SC , SI , and SE , on 9
real-world datasets, trained on the GraphSAGE model.

GATv2 respectively. Across these datasets, we can observe that our proposed metric consistently
distinguishes memorized and non-memorized nodes through significantly higher LDS for memorized
nodes than non-memorized ones. The metric also explains why certain datasets are potentially
resistant to memorization. For instance, in Figure 12(c) and in Table 11, we can observe that Pubmed
shows little to no candidate nodes as memorized, indicating both the models f and g output high
confidence. A potential reason for such consistent performance of the models can be attributed to a
uniform neighborhood, that is, there are no surprise nodes with unusual labels or features that might
require memorization to learn.

Nuances of LDS. However, we also have to note certain shortcomings of our proposed metric, for
instance the LDS for Actor dataset trained on GCN, GraphSAGE and GATv2 consistently yield
statistically less significant scores to distinguish memorized and non-memorized nodes, we surmise
this does not necessarily mean a failure of our metric, but rather the inability of the metric to capture
the nuances of the dataset itself. From Table 19, we can observe that the Actor dataset is highly
heterophilic and the node label informativeness is very low, thus the neighborhood of the dataset is
highly non-uniform to yield consistent label disagreement scores. It is also possible the different
aggregation methods used, for instance the attention mechanism in GATv2 or concatenating the
final feature vectors instead of simple mean aggregation in GraphSAGE could also affect the LDS
calculation. Further, in Table 11 and Table 12, we get ∞ for the effect sizes of Pubmed and, Wisconsin
and Texas. For Pubmed, the reason is because there are either 1 or no nodes showing memorization
and for datasets like Wisconsin and Texas, these are very small heterophilic datasets and the variance
of scores for memorized and non-memorized is 0.0, hinting they all have similar LDS values. While
this highlights a technical limitation in applying standard variance-based effect size metrics in these
edge cases, it primarily reflects the highly constrained nature of local neighborhoods and the resulting
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Table 6: Memorization score (MemScore) and Memorization rate (MR) for the candidate
nodes on 9 real-world dataset, averaged over 3 random seeds. Heterophilic graphs have a higher
memorization score and rate than homophilic graphs.

Cora Citeseer Pubmed

Model Avg
MemScore

MR
(%)

Avg
MemScore

MR
(%)

Avg
MemScore

MR
(%)

GCN 0.1033±0.0006 9.7±0.1 0.2661±0.0048 28.4±0.8 0.0941±0.0012 8.1±0.2
GATv2 0.1663±0.0165 17.0±2.0 0.2621±0.0114 26.3±0.9 0.1312±0.0044 12.9±0.5

GraphSAGE 0.1029±0.0041 10.0±0.4 0.2411±0.0019 24.3±0.6 0.0973±0.0023 9.4±0.3

Cornell Texas Wisconsin

Model Avg
MemScore

MR
(%)

Avg
MemScore

MR
(%)

Avg
MemScore

MR
(%)

GCN 0.3695±0.0153 36.5±1.7 0.3257±0.0107 31.1±1.2 0.2873±0.0116 29.2±0.9
GATv2 0.4102±0.0089 39.0±1.0 0.3701±0.0111 35.4±1.4 0.3227±0.0135 32.0±1.3

GraphSAGE 0.3542±0.0130 35.0±1.6 0.3312±0.0087 33.0±1.1 0.3004±0.0120 30.1±0.9

Chameleon Squirrel Actor

Model Avg
MemScore

MR
(%)

Avg
MemScore

MR
(%)

Avg
MemScore

MR
(%)

GCN 0.5285±0.0053 52.9±0.3 0.5050±0.0133 53.6±1.3 0.3821±0.0087 38.3±0.6
GATv2 0.4962±0.0269 50.3±3.3 0.5131±0.0179 52.9±1.9 0.3599±0.0113 35.9±1.0

GraphSAGE 0.4570±0.0020 46.0±0.4 0.5372±0.0021 54.5±1.1 0.3715±0.0071 37.0±0.5

Table 7: Results of statistical t-test for comparing memorization scores between different
categories on 9 real-world datasets, trained on GCN. It is confirmed that SC (SI ) is significantly
more (less) memorized by the model than SS and SE .

Cora Citeseer Pubmed
Null Hypothesis p-value Effect size p-value Effect size p-value Effect size

M(SC) ≤ M(SS) 0.000 0.5421 0.000 0.9483 0.000 0.2427
M(SC) ≤ M(SE) 0.000 0.4211 0.000 0.7998 0.000 0.2365
M(SS) ≤ M(SI) 0.000 0.7227 0.000 0.8617 0.000 0.2103
M(SE) ≤ M(SI) 0.000 0.5625 0.000 0.6442 0.000 0.1989

Cornell Texas Wisconsin
Null Hypothesis p-value Effect size p-value Effect size p-value Effect size

M(SC) ≤ M(SS) 0.002576 0.9163 0.000 1.4675 0.000 1.4941
M(SC) ≤ M(SE) 0.000831 0.9849 0.000 1.3502 0.000 1.1926
M(SS) ≤ M(SI) 0.000002 1.6713 0.000 1.6077 0.000 2.1659
M(SE) ≤ M(SI) 0.000365 1.0621 0.000 1.3398 0.000 1.4669

Chameleon Squirrel Actor
Null Hypothesis p-value Effect size p-value Effect size p-value Effect size

M(SC) ≤ M(SS) 0.000 1.6719 0.000 1.4719 0.000 1.2230
M(SC) ≤ M(SE) 0.000 1.4670 0.000 1.5799 0.000 1.0820
M(SS) ≤ M(SI) 0.000 1.7081 0.000 1.5538 0.000 1.2615
M(SE) ≤ M(SI) 0.000 1.3474 0.000 1.1429 0.000 1.1544

LDS values on these specific small graphs, rather than necessarily invalidating the underlying concept
of label disagreement. It indicates that on such graphs, the local disagreement patterns measured by
LDS might be very uniform within certain node groups.

Computational complexity of LDS. Calculating the Label Disagreement Score (LDS),
LDSk(vi|SC), requires finding the k-nearest neighbor set Gk−NN

vi for each node vi ∈ SC . We
use the l2 distance on input features x ∈ Rd, a naive implementation involves pairwise distance
computations and selection. For each vi, this takes roughly O(|SC |d+|SC | log |SC |) time. Repeating
for all nodes in SC yields an overall complexity of approximately O(|SC |2(d+ log |SC |)).
Utilizing optimized libraries like scikit-learn, often employing spatial indexing (e.g., k-d trees)
built on the features of nodes in SC , can improve average-case performance. The index construction
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Table 8: Average memorization scores and Memorization for larger datasets along with empirical
runtimes.

Datasets Avg
MemScore

MR
(%) Nodes Edges Homophily Runtime

(Seconds)
Photo 0.0093±0.0084 0.1±0.0 7,650 238,162 0.7850 3.97±0.24

Physics 0.0156±0.0018 0.4±0.1 34,493 495,924 0.8724 17.82±0.24
Computer 0.0005±0.0234 0.6±0.9 13,752 491,722 0.6823 6.26±0.19
ogb-arxiv 0.0031±0.0051 0.4±0.3 169,343 1,166,243 >0.5 491.01±1.55

Table 9: Average memorization scores and Memorization with Graph Transformer as our backbone
model.

Datasets Avg
MemScore

MR
(%)

Runtime
(Seconds)

Cora 0.1359±0.0072 13.4±0.7 1355.43±3.76
Citeseer 0.2486±0.0070 24.9±0.20 1158.74±7.11

Chameleon 0.2807±0.0150 27.3±1.3 1222.66±1.49
Squirrel 0.4810±0.0094 47.7±1.2 4748.68±41.52

takes roughly O(|SC |d log |SC |) time. Querying for k neighbors for each vi ∈ SC then has an
average cost potentially closer to O(k log |SC |). The overall optimized average-case complexity
becomes approximately O(|SC |d log |SC |+ |SC |k log |SC |).
Since |SC | typically scales with the total dataset size N (i.e., |SC | ∝ N ), the computational
cost exhibits a super-linear dependence on N . The optimized complexity scales approximately as
O(Nd logN + Nk logN). This dependence explains the increased runtime observed for larger
datasets. While optimized implementations enhance feasibility, the necessity of indexing or querying
within a node set whose size grows with N fundamentally governs the scaling of runtime. We report
the empirical runtime for calculating the LDS on all datasets trained on GCN, GraphSAGE and
GATv2 in Table 20, Table 21 and Table 22. We can observe that the runtime for LDS computation is
larger for larger graphs such as Pubmed, Squirrel and Actor datasets.

H Strategies for Mitigating Memorization in GNNs

In Section 6 we discussed the practical implications of studying GNN memorization. We showed
how memorization can put models at privacy risk as adversaries can easily infer sensitive training
data. In this section, we propose a surprisingly simple yet effective strategy to mitigate memorization,
namely Graph Rewiring, which is the process of modifying the edge structure of the graph based
on some pre-defined criteria such as Ricci curvature [61, 25, 46], spectral gap [33, 32] or feature
similarity [10, 54] and has been shown to mitigate issues like over-squashing [2] and over-smoothing
[35] while also improving the generalization performance on downstream tasks. Our theoretical
results in Section 4 demonstrate that one of the key factors influencing memorization in GNNs is the
graph homophily. Ideally, we can optimize homophily directly to control the memorization. However,
the challenge here is that calculating homophily requires access to all the node labels, which conflicts
with the downstream task of predicting the labels. An alternative is to look for proxy criteria that can
indirectly influence the homophily level.

Graph Rewiring Reduces Memorization. We adopt the graph rewiring framework proposed in
[54], which adds or (and) deletes edges by computing the pair-wise cosine similarity. The edges
are ranked and modified such that their inclusion/exclusion should lead to an increase in the mean
feature similarity between the nodes. We defer the readers to [54] for more details on the rewiring
framework. We hypothesize that graph rewiring based on feature similarity will indirectly improve
the graph homophily, which should effectively decrease the memorization in GNNs. To test this
hypothesis we train a GCN with 3 random seeds on the syn-cora dataset and compute memorization
scores based on our framework (Section 3), we rewire the graph by adding or (and) deleting edges
and recompute the memorization scores. We also measure the average reduction in memorization
scores and memorization rate on the candidate nodes SC for the GNNs trained on rewired graphs
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Table 10: Average memorization scores and Memorization rate with SGC backbone.

Datasets Avg
MemScore

MR
(%)

Cora 0.0482±0.0165 3.8±0.4
Citeseer 0.1124±0.0213 9.7±2.8

Chameleon 0.3852±0.0111 37.3±0.8
Squirrel 0.3745±0.0141 34.5±3.2

Table 11: Label disagreement score for memorized vs non-memorized nodes in the SC for remaining
real-world datasets trained on GCN and averaged over 3 random seeds.

Dataset MemNodes
LDS

Non-MemNodes
LDS

p-value
(< 0.01)

Effect
Size

Pubmed 0.33±0.00 0.29±0.00 0.00 Inf
Cornell 0.50±0.01 0.34±0.0085 0.006441 8.7681
Texas 0.73±0.0221 0.45±0.0254 0.010398 6.8804

Wisconsin 0.51±0.00 0.25±0.00 0.00 Inf
Actor 0.78±0.0032 0.76±0.0011 0.010259 6.9275

compared to those trained on the original graphs. Note that, the number of edges to modify is a
hyperparameter that needs to be tuned depending on the graph. We consider {100, 500, 1000} as
the space of edge budget for hyperparameter tuning. We choose the setting that involves minimal
edge modifications while leading to maximum improvement in the model’s test accuracy, maximum
improvement in the graph homophily level, and maximum reduction in the memorization rate. We
plot the average memorization rate of candidate nodes of syn-cora-h0.0 before and after rewiring
the graph for additions, both additions and deletions and deletions in Figure 15. We can observe that
edge deletions has the most minimal impact on reducing memorization. We report the actual values
for all the datasets in Table 15,Table 16 and Table 17.
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Figure 15: Memorization rate of candidate nodes in syn-cora-h0.0, before and after edge
modification.

Edge Additions. In Table 15, we present the results for memorization reduction when edges are
added to the graph. We can observe, for instance, on syn-cora-h0.0, by adding edges, we improve
the test accuracy by 8.85% and reduce the memorization rate on candidate nodes by 5.11%.

Edge Deletions In Table 16, we present the results for memorization reduction by deleting edges in
the graph. We can observe that although we show memorization reduction in all the datasets except
on dataset syn-cora-h0.5. By deleting edges, the memorization rate on syn-cora-h0.5 increases
by 2.55% while test accuracy reduces by 0.87%. This counter-result highlights the nuances of trying
to mitigate memorization by graph rewiring. It is possible that there exists a different edge budget
that could still improve the metrics on this dataset, which can only be found by tuning a large number
of edge budgets and then measuring the memorization rate, which quickly becomes computationally
expensive.

Simultaneous Additions-Deletions. To ensure we don’t skew the edge distribution of the graph by
adding or deleting edges, we also perform an experiment where we simultaneously add and delete
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Table 12: Label disagreement score for memorized vs non-memorized nodes in the SC for 9 real-
world datasets trained on GraphSAGE and averaged over 3 random seeds.

Dataset MemNodes
LDS

Non-MemNodes
LDS

p-value
(< 0.01)

Effect
Size

Cora 0.7697±0.0283 0.6179±0.0043 0.017565 5.26
Citeseer 0.7850±0.0129 0.5863±0.0024 0.002069 15.52
Pubmed 0.6312±0.0160 0.2877±0.0007 0.000802 24.95
Cornell 0.80±0.0740 0.34±0.0128 0.009608 7.16
Texas 0.9048±0.00 0.3667±0.00 0.0 inf

Wisconsin 0.8467±0.0323 0.3520±0.0333 0.001785 16.71
Chameleon 0.7985±0.0023 0.7588±0.0017 0.003820 11.40

Squirrel 0.8390±0.0014 0.7814±0.0024 0.001727 16.99
Actor 0.7911±0.0054 0.7747±0.0021 0.073673 2.45

Table 13: Label disagreement score for memorized vs non-memorized nodes in the SC for 9 real-
world datasets trained on GATv2 and averaged over 3 random seeds.

Dataset MemNodes
LDS

Non-MemNodes
LDS

p-value
(< 0.01)

Effect
Size

Cora 0.7717±0.0102 0.6498±0.0009 0.003147 12.57
Citeseer 0.7276±0.0149 0.5723±0.0051 0.006398 8.79
Pubmed 0.4333±0.0815 0.2873±0.00 0.103304 2.02
Cornell 0.5534±0.0177 0.3967±0.0161 0.017247 5.31
Texas 0.6343±0.0122 0.3999±0.0125 0.003702 11.58

Wisconsin 0.4574±0.0595 0.3784±0.0628 0.409718 0.73
Chameleon 0.8868±0.0126 0.5934±0.0208 0.001779 16.74

Squirrel 0.8215±0.0093 0.7849±0.0101 0.094732 2.13
Actor 0.7920±0.0037 0.7715±0.0011 0.021174 4.78

edges to ensure the rewired graph doesn’t deviate much from the original graph statistics. The results
are presented in Table 17. We can observe that after simultaneously adding and deleting edges, the
graph homophily level increases for all syn-cora graphs, leading to an decrease in the memorization
score and memorization rate. At the same time, there is an improvement in the test accuracy of the
models. For instance, on syn-cora-h0.0, by adding and deleting 1000 edges, we improve the test
accuracy by 7.87% and reduce the memorization rate on candidate nodes by 6.01%.

H.1 Label Smoothing vs. Graph Rewiring for Mitigating Memorization

An alternative approach to mitigate memorization is to add a regularization technique such as label
smoothing which discourages overconfidence by training on soft probability distributions instead of
hard one-hot labels. We compare label smoothing with ϵ = 0.1 and graph rewiring in Table 18 syn-
cora datasets. Evidently, graph rewiring not only reduces memorization but also improves downstream
performance contrary to using label smoothing which has an inherent side-effect of also reducing the
test accuracy along with the memorization rate. In the third column of Table 18, we combine both
label smoothing and graph rewiring, to highlight that these methods are not mutually exclusive and
can be combined working both at the data level and the model level to reduce memorization. Our
results indicate, graph rewiring is by far the simplest and best strategy reduce memorization without
affecting the downstream performance.

I Experimental setup and hyperparameters

I.1 Graph Generation Process for syn-cora

We use the syn-cora dataset introduced in [68] to derive all our insights on memorization, as this
benchmark provides the perfect setup to vary the graph homophily level and study its effects on the
rate of memorization. The graph generation process follows a preferential-attachment setup [7] and
is similar to the methods outlined in [34, 1]. The process involves starting with an initial graph and
adding new nodes. We can connect a new node u ∈ class i to an existing node v ∈ class j based on
some probability puv . To ensure the graphs generated follow a power law and the level of heterophily
is controllable, a dependency on a class compatibility matrix Hij ∈ H between class i and j, and
the degree dv of the existing node v are introduced. The node features from real-world graphs, such
as Cora [41], are sampled and assigned to the synthetically generated graphs. We use graphs with
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Table 14: TPR at 1% FPR for MIA on GNNs trained on the original and rewired syn-cora.

Dataset TPR@1%FPR
(Original)

TPR@1%FPR
(Rewired)

syn-cora-h0.00 0.0992 0.0090
syn-cora-h0.30 0.0455 0.0090
syn-cora-h0.50 0.0370 0.0135
syn-cora-h0.70 0.0380 0.0180
syn-cora-h1.00 0.0194 0.0195

Table 15: Memorization score (MemScore), Memorization rate (MR), Test accuracy and Ho-
mophily level for syn-cora dataset averaged over 3 random seeds, trained on GCN, before and
after adding edges to the graph.

Dataset
Avg

MemScore
Before

MR
(%)

Before

Test
Accuracy

Before

Homophily
Before

Avg
MemScore

After

MR
(%)

After

Test
Accuracy

After

Homophily
After

Edges
Added

syn-cora-h0.0 0.7091±0.0168 83.63±1.82 14.64±1.24 0.00 0.6563±0.0081 78.53±0.52 23.50±1.70 0.0159 1000
syn-cora-h0.3 0.5573±0.0047 63.96±1.19 33.33±0.94 0.3002 0.5226±0.0049 59.61±1.13 38.69±1.41 0.3659 1000
syn-cora-h0.5 0.4106±0.0126 45.95±1.62 63.28±4.31 0.5115 0.3992±0.0029 43.24±0.45 70.27±4.49 0.5477 1000
syn-cora-h0.7 0.2616±0.0070 25.98±1.45 77.27±2.86 0.6927 0.2457±0.0036 25.23±0.00 79.13±0.47 0.7020 500
syn-cora-h1.0 0.0021±0.0005 0.00 100 1.0 0.0018±0.0005 0.00 100 1.0 100

homophily levels h = {0.0, . . . , 1.0}, where a score of h = 0.0 denotes a highly heterophilic graph
and a homophily score h = 1.0 indicates a highly homophilic graph. We refer the readers to [68]
for more details on how the compatibility matrix is defined and the graphs are generated. In our
experiments, we do not generate the graphs ourselves.

I.2 Further Explanation on Data Partitioning and Equation (1)

We follow the setup detailed in [63]. Concretely, we divide the training data into three disjoint subsets.
SS contains 80% of the nodes, SI and SC contain 10% each. We use these sets to train two models.
Model f is our target model whose memorization we want to evaluate, while g is an independent
model that we use to calibrate according to Equation (1), following the leave-one-out-style definition
of memorization by Feldman [21]. Model f is trained on SS and SC , and model g is trained on SS

and SI , where SC is the candidate set, i.e., the nodes whose memorization we want to quantify. By
the setup of the experiment, models f and g are both trained on SS , but SC is only used to train f .
Therefore, the difference in behavior between model f and g on SC results from the fact that f has
seen the data and g has not, allowing us to quantify the memorization. Including SI into the training
set of g makes f and g have the same number of training data points, which allows model g to reach
the performance of model f . This makes sure that differences in behavior on SC are not due to model
performance differences.

Equation (1) follows the standard leave-one-out-style definition of memorization. It operates on two
models (f and g) trained on the same dataset S, with the difference that for f , S includes node vi and
for g it does not. The node vi is then the one whose memorization can be measured. It is measured
over the expectation of outcomes of the training algorithm. This means the expectation of behavior of
models f and g on predicting the label of vi correctly as yi. Intuitively, if f is, on expectation, more
capable of correctly predicting the label than g, this must result from the sole difference between the
models, namely that f has seen vi and g has not. It hence quantifies f ’s memorization on vi.

I.3 Hyperparameters

We use PyTorch Geometric [23] for all of our experiments. The hyperparameters used for training
our models, the dataset statistics such as the number of nodes and edges, the homophily and label
informativeness measures [49] are reported in Table 19. All of our experiments were done on a T4
GPU highlighting the computationally efficiency of our proposed framework.

I.4 Empirical runtimes

We present the empirical runtimes averaged over 3 random seeds in seconds for training models f , g
and calculating the memorization score for candidate nodes SC in Table 20, Table 21 and Table 22,
where the backbone GNN models are GCN, GraphSAGE and GATv2 respectively. We can observe
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Table 16: Memorization score (MemScore), Memorization rate (MR), Test accuracy and Ho-
mophily level for syn-cora dataset averaged over 3 random seeds, trained on GCN, before and
after deleting edges to the graph.

Dataset
Avg

MemScore
Before

MR
(%)

Before

Test
Accuracy

Before

Homophily
Before

Avg
MemScore

After

MR
(%)

After

Test
Accuracy

After

Homophily
After

Edges
Deleted

syn-cora-h0.0 0.7091±0.0168 83.63±1.82 14.64±1.24 0.00 0.6994±0.0153 83.03±3.64 14.64±0.94 0.00 100
syn-cora-h0.3 0.5573±0.0047 63.96±1.19 33.33±0.94 0.3002 0.5698±0.0082 63.51±1.19 34.43±2.15 0.3079 500
syn-cora-h0.5 0.4106±0.0126 45.95±1.62 63.28±4.31 0.5115 0.4413±0.0026 48.50% ± 0.26 62.40±1.70 0.5117 100
syn-cora-h0.7 0.2616±0.0070 25.98±1.45 77.27±2.86 0.6927 0.2492±0.0041 25.08±0.52 76.39±4.95 0.6945 100
syn-cora-h1.0 0.0021±0.0005 0.00 100 1.0 0.0023±0.0005 0.00 100 1.0 100

Table 17: Memorization score (MemScore), Memorization rate (MR), Test accuracy and Ho-
mophily level for syn-cora dataset averaged over 3 random seeds, trained on GCN, before and
after simultaneous edge additions and deletions.

Dataset
Avg

MemScore
Before

MR
(%)

Before

Test
Accuracy

Before

Homophily
Before

Avg
MemScore

After

MR
(%)

After

Test
Accuracy

After

Homophily
After

Edges
Modified

syn-cora-h0.0 0.7091±0.0168 83.63±1.82 14.64±1.24 0.00 0.6804±0.0288 77.63±4.44 22.51±0.47 0.0159 1000
syn-cora-h0.3 0.5573±0.0047 63.96±1.19 33.33±0.94 0.3002 0.5210±0.0143 58.71±0.69 37.16±2.05 0.3501 500
syn-cora-h0.5 0.4106±0.0126 45.95±1.62 63.28±4.31 0.5115 0.3871±0.0153 39.79±1.45 65.79±1.88 0.5665 1000
syn-cora-h0.7 0.2616±0.0070 25.98±1.45 77.27±2.86 0.6927 0.2413±0.0058 24.32±1.56 78.91±2.49 0.7114 500
syn-cora-h1.0 0.0021±0.0005 0.00 100 1.0 0.0022±0.0005 0.00 100 1.0 100

that our proposed label memorization framework NCMemo is consistently computationally friendly
across datasets and different GNN models. We also report the runtime for calculating the label
disagreement score in the same tables. We can see that our proposed framework for calculating the
label disagreement score is computationally friendly for almost all the datasets and can be expensive
for very large graphs.
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Table 18: Average memorization scores and Memorization rate with GCN+Label Smoothing.
Graph Rewiring Label Smoothing Graph Rewiring + Label Smoothing

Datasets Avg
MemScore

MR
(%)

Test
Accuracy

Avg
MemScore

MR
(%)

Test
Accuracy

Avg
MemScore

MR
(%)

Test
Accuracy

syn-cora-h0.0 0.6563±0.0081 78.53±0.52 23.50±1.70 0.6000±0.0000 73.6±2.70 15.30±0.83 0.6050±0.0130 71.3±0.9 16.17±0.50
syn-cora-h0.3 0.5226±0.0049 59.61±1.13 38.69±1.41 0.4836±0.0000 56.2±0.90 30.71±0.68 0.4665±0.0239 52.9±3.6 33.01±2.18
syn-cora-h0.5 0.3992±0.0029 43.24±0.45 70.27±4.49 0.3728±0.0100 39.2±1.20 54.54±0.68 0.3640±0.0167 39.0±3.2 57.81±1.00
syn-cora-h0.7 0.2457±0.0036 25.23±0.00 79.13±0.47 0.2667±0.0057 24.5±0.9 73.77±0.33 0.2506±0.0158 20.0±2.9 73.77±0.57
syn-cora-h1.0 0.0018±0.0005 0.00 100 0.0265±0.0016 0 100 0.0282±0.0027 0 100

Table 19: Hyperparameters and dataset statistics.
Dataset Hidden

Dimension LR #Layers |V| |E| #
Classes

Homophily
Level

Node Label
Informativeness

Cora 32 0.01 3 2708 10138 7 0.7637 0.5763
Citeseer 32 0.01 3 3327 7358 6 0.6620 0.4653
Pubmed 32 0.01 3 19717 88648 3 0.6860 0.4223
Cornell 128 0.001 3 183 298 5 -0.2029 0.1574
Texas 128 0.001 3 183 325 5 -0.2260 0.0186

Wisconsin 128 0.001 3 251 515 5 -0.1323 0.0874
Chameleon 128 0.001 3 2277 36101 5 0.0339 0.0516

Squirrel 128 0.001 3 5201 217073 5 0.0074 0.0277
Actor 128 0.001 3 7600 30019 5 0.0062 0.0018

syn-cora 32 0.01 3 1490 2965 to 2968 5 0.0 to 1.0 0.0 to 1.0

Table 20: Empirical runtime for training GCN models f, g and calculating the memorization scores
for SC and calculating the LD score averaged over 3 random seeds with 95% CI (confidence interval).

Dataset
MemorizationScore

Runtime
(in seconds)

LDS
Runtime

(in seconds)

Cora 2.16±0.52 7.31±0.16
Citeseer 1.93±0.15 10.52±0.28
Pubmed 2.86±0.15 41.63±0.72
Cornell 2.11±0.23 3.06±0.51
Texas 1.83±0.16 3.88±0.41

Wisconsin 2.00±0.44 3.50±0.07
Chameleon 2.36±0.17 8.27±0.45

Squirrel 6.23±0.21 24.49±0.11
Actor 2.92±0.20 25.14±0.28

Table 21: Empirical runtimes for training GraphSAGE models f, g and calculating the memorization
scores for SC and calculating the LD score averaged over 3 random seeds with 95% CI (confidence
interval).

Dataset
MemorizationScore

Runtime
(in seconds)

LDS
Runtime

(in seconds)

Cora 1.70±0.19 7.24±0.45
Citeseer 2.55±0.15 10.27±0.26
Pubmed 4.30±0.23 69.71±0.30
Cornell 1.40±0.24 3.04±0.26
Texas 1.55±0.40 3.74±0.34

Wisconsin 1.39±0.15 3.10±0.56
Chameleon 5.29±0.16 8.35±0.46

Squirrel 24.51±0.13 25.56±0.16
Actor 3.83±0.23 24.25±0.53
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Table 22: Empirical runtimes for training GAT models f, g and calculating the memorization scores
for SC and calculating the LD score averaged over 3 random seeds with 95% CI (confidence interval).

Dataset
MemorizationScore

Runtime
(in seconds)

LDS
Runtime

(in seconds)

Cora 3.24±0.26 8.38±0.45
Citeseer 3.52±0.18 10.60±0.27
Pubmed 11.97±0.17 70.26±0.81
Cornell 2.99±0.25 3.17±0.35
Texas 3.23±0.30 3.55±1.03

Wisconsin 2.96±0.18 3.22±0.45
Chameleon 13.75±0.16 8.18±0.36

Squirrel 64.81±0.48 26.60±0.27
Actor 17.47±0.21 25.57±0.25
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