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Abstract

Large language models (LLMs) are excellent in-context learners. However, the
sensitivity of data contained in prompts raises privacy concerns. Our work first
shows that these concerns are valid: we instantiate a simple but highly effective
membership inference attack against the data used to prompt LLMs. To address
this vulnerability, one could forego prompting and resort to fine-tuning LLMs with
known algorithms for private gradient descent. However, this comes at the expense
of the practicality and efficiency offered by prompting. Therefore, we propose
to privately learn to prompt. We first show that soft prompts can be obtained
privately through gradient descent on downstream data. However, this is not the
case for discrete prompts. Thus, we orchestrate a noisy vote among an ensemble of
LLMs presented with different prompts, i.e., a flock of stochastic parrots. The vote
privately transfers the flock’s knowledge into a single public prompt. We show that
LLMs prompted with our private algorithms closely match the non-private baselines.
For example, using GPT3 as the base model, we achieve a downstream accuracy
of 92.7% on the sst2 dataset with (ε = 0.147, δ = 10−6)-differential privacy vs.
95.2% for the non-private baseline. Through our experiments, we also show that
our prompt-based approach is easily deployed with existing commercial APIs.

1 Introduction

Large language models (LLMs) exhibit strong capabilities for in-context learning [6, 40]. By
prepending the adequate prompt to an LLM’s input, the model can perform a myriad of natural
language downstream tasks without any modifications to its parameters [41]. While the data used to
train an LLM is usually assumed to be public, downstream data used in the prompt is often more
sensitive. This can elicit confidentiality issues, for instance, if prompts contain information that
represents valuable intellectual property [34]. At the same time, it also raises privacy concerns when
the data involves personal information about individuals.

In this paper, our first contribution is to show that these concerns are valid. We are the first to
instantiate a highly effective membership inference attack (MIA) [7, 45] against prompts. Our attack
is able to determine if a given data point was used within the prompt of the LLM. The only existing
solution to mitigate this privacy risk would be to forego prompting and instead fine-tune the LLM with
a privacy-preserving training algorithm [25, 54]. Yet, fine-tuning lacks the efficiency and practicality
of prompting. Indeed, fine-tuning requires significantly more data [42], computational resources [25],
and storage space [26]. Additionally, fine-tuning requires access to the LLM parameters. However,
many of the state-of-the-art LLMs are proprietary models deployed behind an API which only allows
its users to query the LLMs [3, 6, 10, 17, 35].
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Figure 1: Our methods for private prompt learning. Left: PromptDPSGD obtains the input
gradients from the LLM, and performs DPSGD to update the soft prompt embedding while keeping
the LLM frozen. Right: PromptPATE creates a noisy ensemble of private discrete prompts, and then
transfers knowledge by selecting a student prompt that can be publicly released. PromptPATE only
needs black-box access of the LLM and, thus, can be easily deployed with commercial APIs.

To leverage the benefits of prompting while at the same time protecting the data contained in prompts,
we propose the first algorithms for prompt learning with privacy. Our algorithms offer rigorous
guarantees expressed using differential privacy [15]. Perhaps closest to existing work on fine-tuning,
we propose to leverage the canonical DPSGD algorithm [1] to learn soft promptswith differential
privacy guarantees. Our PromptDPSGD algorithm performs a private gradient descent on the soft
prompt embeddings prepended to the LLM’s private input. Since these embeddings have very few
parameters in comparison to LLMs, our PromptDPSGD is efficient and yields competitive privacy
utility trade-offs at a fraction of the training complexity of private fine-tuning.

However, learning soft prompts with DPSGD may not always be possible because it requires
computing gradients with respect to the prompt input. As mentioned previously, current APIs [3, 6,
10, 17, 35] usually do not provide these gradients. We thus turn to discrete prompts which consist of
natural language tokens. Discrete prompts address the aforementioned limitations while being more
data-efficient. Our insight is to observe that LLMs with discrete prompts naturally lend themselves
to another canonical approach of differentially private learning known as the private aggregation of
teacher ensembles (PATE) [37]. We introduce PromptPATE, which creates an ensemble of LLMs
with different discrete prompts from the private dataset which we refer to as a flock of stochastic
parrots [5]. Since interacting with the flock directly can leak private information about the prompts, as
we demonstrate with our MIA, PromptPATE additionally performs a knowledge transfer. Therefore,
each model in the flock generates a next token prediction for a short input sequence of some public
data. By performing a noisy majority vote over all models’ token output, we generate a single
output that, due to the noise addition, implements differential privacy guarantees while incorporating
knowledge from the flock. The public input together with the noisy aggregated output form a new
single example for the discrete student prompt that can be prepended to the LLM in lieu of the
individual prompts which contain private information. In addition to providing rigorous privacy
guarantees, our PromptPATE is highly efficient, since, instead of having to query every model from
the flock at inference time, it suffices to query the LLM prepended with the student prompt once.

We perform extensive experiments against multiple popular LLMs, such as GPT3 [6] and Claude [3],
that are deployed behind commercial black-box APIs. Our results highlight that PromptPATE
provides high downstream performance that matches the one of non-private prompting even at very
strong privacy guarantees. On the sst2 dataset with GPT3, for instance, we reach an accuracy of
92.7% with privacy costs as little as (ε = 0.147, δ = 10−6)-differential privacy, even when the public
data used during PromptPATE’s knowledge transfer stem from a different distribution than sst2. Our
results closely matches the non-private baseline accuracy (95.2%). Thus, we conclude that prompt
learning for LLMs is not only more efficient and practical than fine-tuning but can also achieve high
utility even with strong and practical privacy protection in place.

In summary, we make the following contributions:
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• We instantiate the first MIA on prompted LLMs and show that we can effectively infer
membership of the prompted data points with high success.

• We propose a lightweight alternative to DP fine-tuning, namely PromptDPSGD, which
optimizes orders of magnitude fewer parameters while keeping the original LLM frozen.

• We propose PromptPATE, the first method for DP learning with LLMs that requires only
black-box access to the model—making it easily deployable for commercial LLM APIs.

• Our experiments on multiple state-of-the-art commercial APIs [6, 3] highlight that our
methods achieve both high utility and strong privacy protections in various setups.

2 Background and Related Work

Prompts for LLMs. The success of LLMs, such as BERT, Claude, OPT, or different versions of
GPT and their exceptional in-context learning capacities gave rise to prompt-based learning [14, 6,
39, 40, 35, 56]. Prompts serve as demonstrations of the downstream task, which the model can then
generalize from. There are two paradigms for LLM prompting, namely discrete and soft prompts.

Discrete prompts [6, 16, 18, 27, 44] are natural-language instructions that contain examples from the
downstream task in a well-crafted template. Tuning discrete prompts is often done by prompting the
model with different combination of examples, assessing their performance on the downstream task,
and choosing the combination that yields the highest performance as the final prompt.

In contrast to discrete prompts, soft prompts [24, 27] prepend trainable continuous embeddings to
the inputs of LLMs. These embeddings are initialized either at random or with embedding vectors
that correspond to tokens from the dictionary. During tuning, the embeddings are updated through
gradient descent to minimize the loss of the prompted model on the private downstream task. To
increase performance further, trainable embeddings can be prepended not only to the input but also to
every LLM layer, a technique known as prefix [26, 28, 29].

Both soft prompts and prefix train end-to-end without any human involvement through backpropaga-
tion over the LLM. On the other hand, discrete prompts have to be designed manually through careful
prompt engineering. Yet, prompt engineering only needs inference passes over the LLM which makes
discrete prompt more computationally lightweight. Our work provides privacy protection for all of
these paradigms: discrete prompts, as well as for soft prompts, and prefix.

Privacy Leakage in LLMs. LLMs have been shown to memorize data both from their original
large training corpora [8, 20, 23, 32, 48, 55] and from smaller private datasets used to fine-tune
them for downstream tasks [33]. The only prior work around privacy leakage in prompt-based
learning utilizes prompts to extract knowledge from trained LLMs [13, 22, 38]. In contrast, we
study the privacy of the prompting data itself. To do so, we investigate the canonical privacy attack
known as membership inference attacks (MIA) [7, 45]. Its use as a practical means to demonstrate
leakage of private information in ML was recently popularized by a line of work on quantifying
memorization [9, 43, 47]. While prior work utilizes MIAs to assess whether a given data point was
used to train an LLM, we instantiate a MIA to assess whether a given data point was used within the
prompt prepended to the inputs of a trained LLM.

Defending Against Privacy Leakage in LLMs. Prior work either focuses on training [2, 19] or
fine-tuning [25, 54] LLMs with privacy guarantees. These approaches rely on the mathematical
framework of differential privacy (DP) [15] and in particular the DPSGD algorithm for private
stochastic gradient descent [1]. Here, DPSGD is applied to guarantee that one outputs approximately
the same model parameters whether or not any given data point was used to train or fine-tune the
model. To achieve this, DPSGD clips the per-example gradients that are computed during training
and adds well-calibrated noise to each model update. These two operations typically increase the
computational complexity of training and decrease the utility of the resulting model [1, 4, 49]. To
counteract these effects, state-of-the-art methods for full DP-fine tuning in LLMs require extensive
hyperparameter tuning and vast computational resources [25]. Alternative approaches refrain from
updating the large number of model parameters and instead introduce additional layers into the model
architecture and only fine-tune these layers with DPSGD [54]. To the best of our knowledge, no prior
work attempted to provide DP guarantees for prompt data in LLMs.
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(b) AUC-ROC Curve.

Figure 2: MIA Risk. We study GPT3 prompted with 100 different one-shot examples (dbpedia).
left: We present the prediction probabilities at the correct class for members (the one-shot example)
and non-members (50 randomly sampled private points). The output probability for members is
significantly higher than for non-member data points. right: We present the AUC-ROC curves of our
MIA against the 100 prompts (gray lines) and the blue line as an average over all attacks. Given that
each prompt has only one member, the resulting TPRs can only be 0% or 100% which leads to the
step-shape of the gray curves. The result indicates that our attack is significantly more successful
than random guessing (the red dashed line).

Setup and Notation. We denote by P the soft or discrete prompt that is prepended to any input
sequence xi when querying the language model L. For brevity, we denote L([P, xi]) by LP (xi).3
The output yi of LP (xi) is an M -dimensional probability vector, with M being the size of the
model’s vocabulary. Each component of yi corresponds to the probability that the LP assigns to the
respective token for being the next token in the sequence xi. The semantic meaning of the next token
varies depending on the given downstream task. For instance, for classification, the index with the
highest probability indicates the token of the class that LP assigns to xi.

3 Private Information about Prompt Data Leaks from Prompted LLMs

By instantiating a MIA against prompted LLMs, we want to highlight that the private data used within
a prompt (which we refer to as prompt data from hereon) can be subject to a substantial privacy risk.
We showcase this risk at the example of LLMs that are prompted with discrete prompts P containing
tuples of demonstrations from classification downstream tasks as prompt data p = {(px, py)}. For
example, in a prompt with one demonstration (one-shot learning), the prompt data p may be specified
as p = {("The movie was great.", "positive")}. Our prompts are provided in a consistent template
where one or multiple demonstrations are combined with instructions as P = [Instruction, (text
sequence px, class-label token py), . . . ].

For our MIA, we consider an adversary who aims at inferring whether a given private demonstration
(px, py) was used within the prompt data p. The adversary holds n candidate demonstrations of
text sequences and corresponding labels li and queries the text sequences (x1, · · · , xn) to LP with
black-box access. The prompted model LP then returns the output probability vectors (y1, · · · , yn).
Following prior work [21, 53], we analyze the model’s output probability at token yi,li that corre-
sponds to the correct target class label of every xi. The intuition to distinguish between members
and non-members is that the output probabilities at the correct class li will be significantly higher for
demonstrations that were used within the prompt, i.e., members with (px, py) = (xi, li). We show
that even with this simple MIA, we can reliably determine membership for the prompt data.

Experimental Setup. We prompt GPT3-Babbage [6] with multiple one-shot examples to solve
four standard downstream text classification tasks, namely dbpedia [57], sst2 [46], agnews [57] and
trec [50]. The template of our prompts follows [58]. To evaluate our MIAs, we consider the single
data point used within the prompt as a members and 50 other randomly selected data points from
the respective task’s training dataset as non-members. This skewed distribution between members
and non-members (1 vs 50) corresponds to a realistic scenario where only a small proportion of the
candidate data targeted by the adversary are members [21]. To quantify the success of our attack, we
report the AUC-ROC curves of 100 random trials.

3In the prefix method, LP denotes prepending trainable parameters to every layer’s input, and not only to the
model input xi.
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Results. Before evaluating the success of the MIA, we analyze the probability output from GPT3
for the correct target class between member and non-member data points. Figure 2a shows for the
dbpedia dataset that the prediction probabilities for non-members are significantly lower than for
members. Figure 2b shows that this leads to a high MIA risk in terms of an average AUC score of
0.84 for the prompt data. Similar results for other datasets and models are presented in Appendix D.
These results highlight that private information can leak from prompt data easily and thus motivate
the urgent need for defenses which we develop in the rest of this paper.

4 Methods for Privacy Preserving Prompts

As of now, if we want to protect the private downstream data, we have to forego prompting altogether
because, to the best of our knowledge, no algorithms for private prompt learning exist. The only
alternative to privately adapt the LLM would be to perform DP fine-tuning [25, 54]. However, this
approach is only feasible when we have direct access to the LLM to update its parameters with
DPSGD [25] or to even change the model architecture to insert additional parameters—fine-tuned
with DPSGD [54]. This is prohibitively expensive and mostly impossible with the commercial API,
thus we propose the first algorithms that enable differentially private prompt learning.

We consider two main paradigms of prompting: soft prompts and discrete prompts. To learn private
soft prompts, we introduce PromptDPSGD. PromptDPSGD is a parameter-efficient alternative to
DP fine-tuning that does not need modifying the parameters or architectures of the LLM. However,
many popular APIs [3, 6, 10, 17, 35] do not support soft prompts yet as it requires gradients with
respect to the input. Therefore, we propose PromptPATE for discrete prompts. PromptPATE
requires only black-box access to an LLM without any knowledge of the LLM’s architecture or mode
of operation. Instead, the algorithm only needs the next-token prediction of the LLM. This, to our
knowledge represents the first solution for privately adapting LLMs in restricted API setups.

4.1 PromptDPSGD: DPSGD for Private Soft Prompt Learning

In general, all discrete input tokens to LLMs are internally transformed into continuous input
embeddings that the LLM then operates on. Soft prompts are just additional continuous input
embeddings that can be prepended to the original input embeddings before passing them through the
LLM. To train (or tune) soft prompts, we require training data from a potentially private downstream
task. After prepending the continuous soft prompt embeddings to input examples from the training
data, we can calculate the gradients for the loss of the prompted LLM with respect to these soft
prompt embeddings. The gradients provide information about how the soft prompt should be updated
in order to minimize the loss on the training data.

If we can obtain the gradients for soft prompts, we can learn these prompts with privacy guarantees
by applying the canonical DPSGD algorithm [1]. The same applies to prefix, therefore, when we
talk about soft prompts in the following, we implicitly also include prefix. We call this approach
PromptDPSGD. The algorithm yields soft prompts with DP guarantees that can be deployed with
the LLM to solve the respective downstream task. The privacy analysis of PromptDPSGD follows
the one of the standard DPSGD. Note, however, that while conceptually similar to fine-tuning the
LLM’s parameters with DPSGD [54, 25], PromptDPSGD differs in a crucial aspect. In DP-SGD
fine-tuning, we require the gradients with respect to all or a subset of the model parameters and
update these parameters to minimize the loss. In contrast, in PromptDPSGD, we use the gradients
with respect to the soft prompt embeddings and only alter these. We highlight this difference in our
PromptDPSGD-algorithm that we present in Appendix C.

While this difference seems subtle, it has far-reaching consequences. First, there are orders of magni-
tude fewer parameters that need to be updated which increases training efficiency. Second, and most
importantly, it allows us to keep operating on the original LLM. We discuss the resulting advantages,
such as storage efficiency, and the ability to process multiple different tasks simultaneously at the end
of this section (in 4.3). These advantages make PromptDPSGD conceptually superior to private
fine-tuning. At the same time, as we show in our evaluation, despite the small number of trainable
parameters, PromptDPSGD, for simpler tasks, matches the performance of private fine-tuning. Yet,
current APIs [3, 6, 10, 17, 35] do not support soft prompting, prefix, or private fine-tuning and only
provide black-box access through discrete prompts. For these setups, we propose PromptPATE.
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4.2 PromptPATE: PATE for Privacy Preserving Discrete Prompts

PATE [36, 37] enables learning classifiers with DP guarantees. It first trains an ensemble of teacher
models on disjoint subsets of the private data. Second, through a noisy labeling process, the ensemble
privately transfers its knowledge to an unlabeled public dataset. Finally, a separate student model is
trained on this labeled public dataset for release. The noisy knowledge transfer in the second step
relies on the Confident GNMAX algorithm [37] that we detail in Appendix C. It consists of three
main parts: for any input data point from the public unlabeled dataset, each teacher votes for the
most likely class. Then, the consensus over the teachers’ votes is determined and queries with low
consensus are rejected to avoid revealing too much information about the private decision boundary.
Finally, the returned class label for any non-rejected data point is determined as a noisy argmax
over all teachers’ vote counts—where the added noise is sampled from a Gaussian distribution to
implement the DP guarantees. For each rejected or labeled data point from the public dataset, privacy
costs are accumulated and the ensemble stops labeling once a target privacy budget is reached.

Our PromptPATE follows the general flow of standard PATE: training the teacher models, private
knowledge transfer, and training a student model. However, due to the significant differences between
in-context learning for LLMs and supervised learning in the original PATE and how these different
paradigms leverage private and public data, we had to redesign each of these building blocks. This
allows to leverage both the data-efficiency of prompts and the rigorous privacy protection from PATE.
In the following, we present the building blocks in our PromptPATE.

Teacher Models (Flock of Stochastic Parrots). Instead of training teacher models on disjoint
partitions of the private data, we use the private data to create disjoint prompts for the LLM. More
specifically, we use examples, for instance {("The movie was great.", "positive"), ...}, from the private
training data to create prompts that can then be deployed with the LLM as teachers.

Private Knowledge Transfer. During the private knowledge transfer, the teachers label public data
sequences, such as ("I did enjoy it.", _). Each teacher votes with the most likely class labels for the
private downstream task. In Appendix D, we show that PromptPATE can also operate directly on
pure next token predictions from Claude [3] without access to per-token probabilities—enabling full
black-box private prompts. By performing the private voting process according to standard PATE
with the Confident GNMAX algorithm, we turn our per-teacher predictions into a final class label
token that will be appended to the sequence, e.g., ("I did enjoy it", "positive"). The privacy accounting
and analysis of our PromptPATE exactly follows the one of standard PATE [37].

Student. The most naive way to obtain a student model following standard PATE would be to
label many public sequences and train a language classifier using supervised learning on this data.
However, due to the relatively high number of data needed for supervised learning, and the fact that
each query to the private teachers consumes privacy, this process would incur high privacy costs. We
propose a better approach building on the data-efficiency of prompting [42] by using labeled public
sequences to create new discrete student prompts. The selected prompt can then be deployed with the
LLM as the PromptPATE student model.

In theory, labeling one public sequence by the ensemble would be sufficient to create such a prompt.
This approach yields negligible privacy costs, but the resulting prompt might not have good utility
due to the high variance in the performance of prompts [58]. Therefore, we generate multiple prompts
based on different labeled public sequences and perform prompt tuning to select the best student
prompt. Care must be taken during selection: utility cannot be evaluated on the private data anymore
given that the prompt will be publicly deployed and selecting based on the private data would incur
additional privacy costs. We solve this tension by using parts of the newly-labeled public data as
validation data to assess utility of the student prompts. By selecting the prompt with the highest
validation accuracy, we deploy the student prompt that most resembles the private teachers.

4.3 Advantages of (Private) Prompting over (Private) Fine-Tuning

Our private prompt learning enables us to leverage the general advantages of prompting over fine-
tuning while preserving privacy. Private prompting requires significantly less storage than private
fine-tuning. While fine-tuning requires storing a separate copy of the LLM model for each downstream
task [24], prompts operate only on the input level of LLMs without adapting model parameters, such
that only a small task-specific prompt needs to be stored for each downstream task. For example, each
copy of the fine-tuned RoBERTa base model requires 125M parameters (∼500MB). This becomes
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Dataset
M Soft-Prompt (Our) Prefix (Our) Full-Tuning [25] LoRA-Tuning [54]

P <10K <100K 125M 1.2M

G ε = 8 ε =∞ ε = 8 ε =∞ ε = 8 ε =∞ ε = 8 ε =∞
sst2 92.31 95.64 91.97 96.33 85.89 96.40 92.97 96.60
qnli 84.11 89.48 87.17 94.84 84.81 94.70 88.59 94.70
qqp 81.52 86.56 82.58 91.42 86.15 92.20 86.26 92.20
mnli 75.15 82.49 80.57 90.34 83.30 90.20 82.92 90.20

Table 1: Performance of PromptDPSGD. We report the accuracy values (%) for each dataset. All
ε values are reported as standard DP guarantees. We run the experiment on RoBERTa [30]. The first
row M: the type of the private Method, the second row P: the number of Parameters tuned for the
method, and the third row G: DP Guarantee. We also present results for ε = 3 in Appendix D.

prohibitively expensive, especially as the number of parameters for state-of-the-art LLMs rapidly
increases. In contrast, soft-prompts and prefix, as the one generated by PromptDPSGD (using
implementation from [29]) with the standard prompt length of 10 tokens require less than 10K
parameters (40KB) for the soft-prompt and 100K parameters (400KB) for the prefix. A discrete
prompt, such as the one generated in PromptPATE, requires less than 1 KB of prepended text.
Prompts also enable processing many examples from different tasks in a single batch [26], called
mixed-task inference. This allows more efficient use of LLMs since we do not have to wait for a
sufficient number of requests for a single task before processing them. This is not possible with any
form of fine-tuning, where the fine-tuned model can serve solely a single task.

5 Experimental Evaluation

We evaluate both PromptDPSGD and PromptPATE and show that they match the performance of
non-private prompting while providing strong privacy guarantees.

5.1 PromptDPSGD

Experimental Setup. To train soft-prompts and prefix, we follow the experimental setup from
prior work on DP fine-tuning. Specifically, we use differentially-private optimization engines for
transformers, such as models from the BERT family for the language understanding tasks. The
experimental results for classification were performed on the RoBERTa models [30], using the
standard NLP datasets, namely sst2, qnli, qqp, and mnli, from the GLUE benchmark [51]. Our imple-
mentation for soft-prompt and prefix is based on P-Tuning v2 [29]. To tune the (hyper)parameters
for PromptDPSGD, we adjust the length of the soft-prompt or prefix in the private setting (with
the default value of 10, which commonly yields good performance). For the privacy parameters, we
set the δ = 1/N , where N is the number of data points in a given dataset, The clipping threshold of
per-example gradients is set to 0.1 in most cases. We use a batch size of 1024. The detailed selection
of (hyper-)parameters is presented in Appendix E.

Results. We compare our PromptDPSGD against state-of-the-art approaches for private fine-
tuning on multiple private downstream datasets. Our results are shown in Table 1. We highlight
that both soft prompts and prefix provide competitive privacy utility trade-offs. For example, the
difference in accuracy values between the non-private baseline and the private soft prompt ranges
from 3% (for the simplest sst2 dataset) and up to 7% (for the most difficult mnli dataset). This
mirrors results for other private methods, such as the private fine-tuning of LoRA [54]. We also
observe that, similarly, for simple tasks, such as sst2 or qnli, the performance of soft prompt or prefix
matches the one of fine-tuning. For the more difficult tasks, namely qqp and mnli, the performance
of prefix and soft prompts is also relatively close to fine-tuning. The results obtained for these
methods are highly influenced by the number of optimized parameters. For example, for the SST2
task and the RoBERTa-Base model, the prefix requires 19970 additional parameters while soft prompt
adds solely 2306 parameters. On the other hand, the number of privately tuned parameters is a few
orders of magnitude bigger for fine-tuning and equal to the size of the trained model, namely 125M
for the method proposed in [25], while the fine-tuning approach from [54] optimizes around 1.2M
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Lower Ens. Upper Our PromptPATE
Bound Acc. Bound IID Transfer OOD Transfer

Private ε = 0 ε =∞ ε =∞ Public ε Test acc Public ε Test acc

sst2 76.3 90.0 93.8 sst2 0.178 88.8±2.3 imdb 0.187 87.2±1.9

agnews 62.0 72.8 78.2 agnews 0.248 71.7±0.8 arisetv 0.258 67.9±1.7

trec 40.7 57.6 58.7 trec 0.281 52.8 ±1.5 qqp 0.293 50.9±3.5

dbpedia 44.2 81.6 85.6 dbpedia 0.194 80.3 ±1.3 agnews 0.203 74.6±1.4

sst2 (C) 82.0 94.0 95.2 sst2 0.147 92.3 ±1.1 imdb 0.154 92.7 ±0.8

agnews (4) 62.0 75.8 81.0 agnews 0.145 73.5 ±1.2 arisetv 0.145 69.6 ±1.8

Table 2: Performance of PromptPATE. We compare PromptPATE with three baselines: zero-shot
(Lower Bound), the ensemble’s accuracy (Ens. Acc), and the non-private baseline (Upper Bound) on
four classification benchmarks. We study two settings, (IID Transfer) when the public dataset is from
the same and (OOD Transfer) different distribution than the private data. We find that PromptPATE
achieves strong privacy protection (ε < 0.3 at δ = 10−6) and utility close to the non-private and
significantly higher than the zero-shot. Unless otherwise specified, the experiments are performed on
GPT3-Babbage with one-shot prompts. Additionally, we also run experiments on GPT3-Curie for
sst2 (C) and 4-shot prompts for agnews (4).

parameters. Our results reflect a general trend, where prompts are suited for small downstream tasks
while fine-tuning with its bigger number of parameters can also cater to more complex tasks with
larger training data sets.

5.2 PromptPATE

Experimental Setup. Teachers: Unless otherwise specified, we rely on GPT3-Babbage as the
base LLM and select one-shot examples randomly without replacement from the private downstream
task as prompt data. Our prompt template follows Zhao et al. [58]. For each setting, we deploy 200
teacher prompts. Private knowledge transfer: We use the implementation of PATE’s Confident
GNMAX algorithm and the privacy accounting from [12] and report our algorithm’s hyperparameters
in Appendix E. Student: For each private downstream task, we experiment with two setups (1)
selecting public input sequences from the same (IID) and (2) from a different distribution (OOD)
as the private data. We introduce three new datasets for the OOD setup: imdb [31], arisetv [11] and
qqp [52]. The details of preprocessing these datasets can be found in Appendix E. In both the IID
and OOD setup, we limit the size of the public dataset to 500 input sequences from the respective
datasets. After the ensemble finishes labelling, we select the best labeled public sequence as prompt
data based on the validation accuracy on the labeled public set. We repeat the process three times
and report average and standard deviation of the test accuracy for the selected student prompt on the
private test set. To improve utility, both teachers’ and students’ output probabilities from GPT3 are
recalibrated using contexual calibration [58].

Results. We compare PromptPATE against three baselines: the lower bound baseline represented
by a zero-shot prediction (ε = 0), i.e., when the LLM is only prompted with an instruction, the
private ensemble accuracy (ε = ∞), and the upper bound as a non-private one-shot prediction
(ε = ∞) using the best example from the private data as prompt data. (To save costs, we select
from 200 candidates.) Table 2 shows that, over all setups, PromptPATE achieves similar utility to
the non-private baseline and significantly improves over zero-shot predictions—even at very strong
privacy protection (ε < 0.3, δ = 10−6). Our results also highlight that the distribution of the public
data does not need to be very close to the distribution of the private data to yield high-utility student
prompts. For example, they can be collected from different domains (dbpedia holds extracts from
wikipedia while its public data agnews contains news articles) and for different tasks (trec aims to
classify the topic of a given answer while qqp serves to measure the similarity of two questions). Still,
with dbpedia being the private downstream data and agnews as public, we achieve an accuracy of
74.6%, which is significantly higher than the zero-shot baseline with 44.2%.

We also provide further insights into the privacy-utility trade-offs that can be achieved with Prompt-
PATE in Figure 3b. Our results highlight that with more public sequences queried to the ensemble,
the privacy consumption increases while, after roughly 100 queries, with even ε < 0.2, the student
model’s test accuracy saturates. This yields very favorable privacy-utility trade-offs which we attribute
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Figure 3: Additional Insights of PromptPATE. We perform ablation studies on GPT3-Babbage
and use dbpedia as private and agnews as public data. Left: Teacher consensus as the fraction of
teachers who vote for the correct class over 500 public input sequences. PromptPATE achieves
overall high consensus. Right: Student accuracy as a function of the public query set’s size. Already
with as few as 100 queries, we observe a plateau in accuracy which highlights PromptPATE’s data
efficiency.

mainly to the data efficiency of discrete prompts: Even from within as little as 100 labeled examples,
a high-performing student prompt can be derived. Additionally, we observe that the per-query privacy
costs of PromptPATE are relatively low, further benefiting the privacy-utility trade-off. The small
privacy costs result from the high consensus between the teacher predictions4, see Figure 3a—that
might result from all teachers relying on the same underlying LLM, just with different prompts.

Scalability. Finally, we also study how PromptPATE scales with larger LLMs and more examples
in the prompt. We experiment with a more performant LLM (GPT3-Currie) for sst2. Due to the
higher per-query costs, we are not able to repeat this experiment for all datasets. Our results show that
the performance of our private prompt increases together with the performance of the public prompt
(92.7% accuracy on Curie vs. 87.2% on Babbage) while the privacy budget ε decreases (from 0.178
to 0.147). To investigate flexibility in terms of numbers of private examples provided as prompt data,
we also experiment for agnews with 4-shot teachers. Similar to the non-private study [58] that reports
improvements for agnews in the 4-shot setting over 1-shot, we observe that this improvement also
translates to the private prompt. Our results indicate that with increasingly more powerful LLMs and
larger context windows, private prompting will increase further in terms of privacy-utility trade-offs.

6 Conclusions and Outlook

By instantiating the first simple yet effective membership inference attack against prompted LLMs,
we show that they leak private information about their prompt data. We propose private prompt
learning as a holistic and broadly applicable new approach to mitigate this risk. We first introduce
PromptDPSGD that enables to train soft-prompts with privacy guarantees. In contrast to fine-
tuning, soft prompts optimize significantly fewer parameters and do not require any update of LLM
parameters or changes to its architecture. As the first solution to private downstream learning with
LLMs in black-box access scenarios, we propose PromptPATE. PromptPATE builds on the highly
data-efficient discrete prompts and implements privacy through a noisy knowledge transfer. Through
our evaluation against two popular LLMs deployed behind commercial black-box APIs (GPT3 and
Claude) [6, 3], we highlight that this method yields downstream performance that matches the one of
non-private prompting at very strong privacy guarantees. As LLMs rapidly improve and increase
in size, prompts are achieving consistently higher performance while fine-tuning becomes more
challenging at this scale. This suggests that privacy protections for prompts will become even more
important, especially as context sizes expand.
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A Broader Impacts

The growing importance of in-context learning as a paradigm for leveraging LLMs on private
downstream tasks has significant implications for privacy. We present the first approaches for
obtaining prompts with privacy guarantees, thereby enabling the use of this learning paradigm on
sensitive data. This advancement has the potential to increase trust and acceptance of LLM-based
systems for private applications. Our approach PromptPATE is the first viable technique for private
downstream adaptation of black-box LLMs, which enables integrations into the state-of-the-art
commercial LLM APIs. We acknowledge that—as with any application that relies on DP—care must
be taken when choosing the privacy parameters ε and δ since setting these incorrectly can lead to
a false sense of privacy. Therefore, our work orientates at the privacy parameters that have been
shown to provide reasonable protection in prior work. Thereby, we also ensure consistency and
comparability in evaluations between the different appraoches.

B Limitations

Tuning Instructions and Templates. For our discrete prompts, we did not tune the instructions or
templates but instead relied on a template from prior work [58]. The effectiveness and performance
of our PromptPATE could potentially be further improved by tuning the instructions and templates.

Privacy Risk of Pretrained LLM: We build on pretrained LLMs to learn and deploy our private
prompts. Our methods solely target the protection of the private data used for these prompts. However,
it is also important to acknowledge the inherent privacy risks for data used to pretrain the LLM. We
leave the pretrainig of LLMs with privacy guarantees to an orthogonal line of work.

Limited Monetary Budget for our Experiments. Due to cost limitations, we were unable to
experiment with the latest and best available model, GPT4. Our experiments with GPT3-Curie in
comparison to less powerful GPT3-Babbage however indicate the clear trend the our private prompts
improve in performance as the non-private baseline improves due to better models. Furthermore,
again due to the cost limitation, we were not able to incorporate a larger number of teachers in our
experiments for PromptPATE. Therefore, the best non-private teacher baseline that we report might
not be the best achievable if one had more teachers to choose from. We chose from 200 and note
that with more (and potentially better teachers), not only the baseline but also the teacher ensemble’s
performance would get better.

Hyperparameter Tuning. To save computation costs, we did not exhaustively tune all hyperpa-
rameters in our experiments. While our approach still achieves high utility and good privacy-utility
trade-offs, we acknowledge that with more hyperparameter tuning the performance together with the
understanding of optimal configurations for private prompt learning could increase.

Assumption of a Trusted LLM API Provider. In our work, the API provider gets to interact with
the private data, for example, through the teachers’ prompts in PromptPATE. Therefore, we have
to assume trust in the API provider. The privacy guarantees through our private prompt learning
protect the privacy of the prompt data against users that interact with the prompted LLM. In practice,
companies that are concerned about the privacy of their data with respect to the API provider could
make contracts with the API providers on the use of their data or buy access plans that guarantee that
data queried to the API is treated privately. We leave implementing cryptographic approaches that
could relief the assumption on trusting the API provider entirely, for example, by enabling the LLM
to run inference on encrypted private data to future work.

C Additional Insights into our Methods

C.1 PromptDPSGD

We present the full PromptDPSGD algorithm in Algorithm 1.
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Algorithm 1: PromptDPSGD. In contrast to the standard DPSGD algorithm that updates model
parameters during private training or fine-tuning, our PromptDPSGD privately updates the soft
prompt parameters. We highlight these changes with respect to standard DPSGD training or
fine-tuning in blue.
Require: Private downstream data D = {(xi, yi) | i ∈ [N ]}, prompt sequence length s, embedding

dimensionality e, trained LLM L with frozen parameters, loss function `(Lp, x) for prompted LLM,
Params: learning rate ηt, noise scale σ, sampling rate q, max gradient norm c, training iterations T .

1: Initialize P0 ∈ Rs×e at random
2: for t ∈ [T ] do
3: Sample mini-batch Bt according to sampling rate q from D {Poisson sampling}
4: For each i ∈ |Bt|, compute gt(xi)←∇Pt `(LP , xi) {Compute per sample gradient w.r.t. pt}

5: ḡt(xi)← gt(xi)/max
(

1, ‖gt(xi)‖2
c

)
{Clip gradient}

6: g̃t ← 1
|Bt|

(∑
i ḡt(xi) +N

(
0, σ2c2I

))
{Add noise}

7: Pt+1← Pt −ηtg̃t {Update soft prompt}
8: end for
9: Output pT and compute the overall privacy cost (ε, δ).

C.2 PromptPATE

Extended Background on PATE. We include the standard Confident-GNMax Aggregator Algo-
rithm from [37] below.

Algorithm 2: Confident-GNMax Aggregator by [37]
Require: input x, threshold T , noise parameters σ1 and σ2

1: if maxj{
∑
i∈[E] ni,j(x)}+N (0, σ2

1) ≥ T then
2: Output argmaxj{

∑
i∈[E] ni,j(x) +N (0, σ2

2)}
3: else
4: Output ⊥
5: end if

C.3 Privacy Analysis

PromptDPSGD. Our PromptDPSGD can be seen as a repeated sampled Gaussian mechanism [1],
with sampling performed over the entirety of the private prompt dataset. The difference to standard
DPSGD for training or fine-tuning is that we do not update the model parameters, but the trainable
embeddings for the soft prompts. This is conceptually different from standard DPSGD in terms of
which parameters are updated. The privacy guarantees of the training mechanism still follow Abadi et
al. [1], but with respect to the soft prompt embeddings: whether or not a particular data point will be
included in the private training set used for tuning the prompt, the resulting soft prompt embeddings
after training will be roughly the same. Especially by applying the clipping operation at every step,
each mechanism’s sensitivity is bounded by c. Privacy is then implemented as the trainable soft
prompt embeddings are updated while adding noise noise drawn from N (0, c2σ2I).
Theorem 1 (Privacy of PromptDPSGD). Let T be the total number of repetitions (training itera-
tions) of our PromptDPSGD and the sampling rate be denoted by q. Then, there exist two constants
c1 and c2, such that for any ε < c1q

2T our PromptDPSGD guarantees (ε, δ)-DP, if for any δ > 0,

we choose the noise according to σ ≥ c2
qc
√
T log 1/δ

ε .

Proof. The proof follows the one by Abadi et al. [1], using their moments accountant that models the
privacy loss as a random variable dependent on the stochastic noise added.

PromptPATE. Our PromptPATE relies entirely on the Confident GNMAX algorithm from Pa-
pernot et al. [37]. We preserve the assumption underlying the algorithm and the respective privacy
analysis that the sensitivity during the voting mechanism equals one. This is done in PromptPATE
by assigning disjoint data points from the private prompt downstream dataset to all teachers. As a
consequence, the privacy analysis of our PromptPATE entirely follows Papernot et al. [37].
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Both our PromptDPSGD and PromptPATE experience the post-processing properties of DP, i.e.,
once trained, the privacy guarantee (ε, δ) sets an upper bound on privacy leakage for the prompt data,
independent on the number and type of queries that will be posed to the final prompted LLM.

D Additional Results

D.1 Membership Inference Attacks

We present the full results of MIA against GPT3 with one-shot prompts on 4 datasets in SCW:
Section4.
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Figure 4: MIA Risk over Multiple Datasets on GPT3. We study GPT3-babbage prompted with
100 different one-shot examples on four datasets. Top: We present the prediction probabilities at the
correct class for members (the one-shot example) and non-members (50 randomly sampled private
points). The output probability for members is significantly higher than for non-member data points.
Bottom: We present the AUC-ROC curves of our MIA against the 100 prompts (gray lines) and the
blue line as an average over all attacks. Given that each prompt has only one member, the resulting
TPRs can only be 0% or 100% which leads to the step-shape of the gray curves. The result indicates
that our attack is significantly more successful than random guessing (the red dashed line).

In addition, we also perform similar experiments on GPT2-xl with four-shot examples, with results
presented in Figure 5. We replace dbpedia with cb because the input in dbpedia is usually longer than
the context length of GPT2.

D.2 PromptPATE on Claude

We present the experiment results of PromptPATE on Claude [3]. Different from GPT3 that outputs
logits over the whole vocabulary, Claude only gives us access to the next most likely token.

Experimental Setup. Teachers: We rely on Claude-v1 as the base LLM. We use 2-shot prompts
for sst2 and agnews, 4-shot for trec and 1-shot for dbpedia. We set the maximum generated tokens to
1 and temperatures to 0. We also create an "other" category in case the moel’s output does not fall
under any specified categories. For each setting, we deploy 400 teacher prompts. Private knowledge
transfer: We use the implementation of PATE’s Confident GNMAX algorithm and the privacy
accounting from [12] and report our algorithm’s hyperparameters in Appendix E. Student: We limit
the size of the public dataset to 200 input sequences from the respective datasets. The number of
shots for students corresponds with the teachers.

D.3 More results for PromptDPSGD

We present the additional results for PromptDPSGD with ε = 3 on the classification tasks in Table 5.
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Figure 5: MIA Risk over Multiple Datasets on GPT2-xl (4 shot). We study GPT2-xl prompted
with 100 different four-shot examples on four datasets. top: We present the prediction probabilities
at the correct class for members (the one-shot example) and non-members (50 randomly sampled
private points). The output probability for members is significantly higher than for non-member data
points. bottom: We present the AUC-ROC curves of our MIA against the 100 prompts (gray lines)
and the blue line as an average over all attacks. Given that each prompt has only one member, the
resulting TPRs can only be 0%, 25%, 50%, 75% or 100% which leads to the step-shape of the gray
curves. The result indicates that our attack is significantly more successful than random guessing (the
red dashed line).

Lower Ens. Upper Our PromptPATE
Bound Acc. Bound

Private ε = 0 ε =∞ ε =∞ Public ε Test acc

sst2 92.7 96.0 98.0 sst2 0.048 95.7± 1.4
agnews 72.4 79.1 82.7 agnews 0.056 74.6± 1.5
trec 69.0 79.9 82.2 trec 0.068 79.3± 1.2
dbpedia 88.0 92.4 93.5 dbpedia 0.042 90.9± 0.6

Table 3: Performance of PromptPATE on Claude. We compare PromptPATE with three baselines:
zero-shot (Lower Bound), the ensemble’s accuracy (Ens. Acc), and the non-private baseline (Upper
Bound) on four classification benchmarks. We find that PromptPATE achieves strong privacy
protection (ε < 0.1 at δ = 10−6) and utility close to the non-private and significantly higher than the
zero-shot.

E Additional Setup

E.1 PromptDPSGD

We train PromptDPSGD on NVIDIA A100 GPUs. We execute (hyper-)parameter search that takes
into account learning rate (LR), max grad norm (GRAD), number of epochs (Epochs), the token
length of prefix and prompt. In general, we find that the prompt and prefix token length of 10 is close
to the optimal value in most cases. For the private (hyper-)parameters, in most cases we tune for
ε = 8 and use similar (or even the same) parameters for other ε values. We set the max grad norm to
0.1 in most cases and then adjust the number of epochs (the more the better, for example, 100), and
the learning rate [54]5. The batch size is set by default to 1024.

We show the specific parameters chosen for PromptDPSGD in Table 6.

5We would like to thank the authors of [54] for their help, especially for the very useful and practical pieces
of advice on how to tune the parameters for differential privacy from Huseyin A. Inan.
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Dataset
M Soft-Prompt (Our) Prefix (Our) Full-Tuning [25] LoRA-Tuning [54]

P <10K <100K 125M 1.2M

G ε = 3 ε =∞ ε = 3 ε =∞ ε = 3 ε =∞ ε = 3 ε =∞
SST2 90.48 95.64 90.37 96.33 91.86 96.40 92.60 96.60
QNLI 83.62 89.48 86.05 94.84 87.42 94.70 86.97 94.70
QQP 80.29 86.56 80.89 91.42 85.56 92.20 85.12 92.20

MNLI 73.97 82.49 80.10 90.34 82.99 90.20 82.08 90.20

Table 4: Private classification with soft prompts and prefix for ε = {3,∞} and the
RoBERTaBASE model. We use the same setup and notation as in Table 1.

Dataset M Soft-Prompt (Our) Prefix (Our) Full-Tuning [25]

P <10K <100K 125M

SST2 91.05 93.58 90.94
QNLI 87.62 89.45 89.42
QQP 82.29 83.50 87.49

MNLI 76.05 86.71 86.28

Table 5: Private classification with soft prompts and prefix for ε = 8 and the RoBERTaLARGE
model. We use the same setup and notation as in Table 1.

E.2 PromptPATE

E.2.1 Hyperparameters for Confident-GNMax

We present our hyperparameters for Confident-GNMax in Table 7.

E.2.2 Dataset Preprocessing

sst2, trec, agnews, dbpedia and cb are taken from the repo of [58]. All other public datasets are
downloaded from huggingface. To reduce the cost of quering APIs, we randomly sample 300 points
from the test set to report the test accuracy. For imdb, we random select one sentence from each entry
and also remove the <br/> tag. For qqp, we only take the column of "question 1" in the public set.
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Dataset Method RoBERTa BS LR ε GRAD Epochs P-Length Accuracy (%)
SST2 Prompt Base 1024 0.005 ∞ N/A 60 100 93.23
SST2 Prompt Base 900 0.05 8 0.01 21 9 92.32
SST2 Prompt Base 1024 0.005 3 0.05 100 10 86.35
SST2 Prompt Large 2048 0.005 8 4 100 10 91.05
SST2 Prefix Base 32 0.01 ∞ N/A 60 20 94.61
SST2 Prefix Base 1000 0.05 8 4 22 1 91.97
SST2 Prefix Base 1024 0.01 3 0.2 100 50 90.37
SST2 Prefix Large 2048 0.05 8 4 22 1 93.58

QNLI Prompt Base 1024 0.005 ∞ N/A 60 128 89.48
QNLI Prompt Base 1024 0.005 8 0.05 100 10 84.11
QNLI Prompt Base 1024 0.005 3 0.1 100 50 83.62
QNLI Prompt Large 2048 0.01 8 0.05 100 10 87.62
QNLI Prefix Base 1024 0.005 ∞ N/A 60 20 94.84
QNLI Prefix Base 1000 0.03 8 0.07 22 10 88.77
QNLI Prefix Base 1024 0.01 3 0.2 100 50 85.78
QNLI Prefix Large 2048 0.03 8 0.07 22 10 89.45

QQP Prompt Base 1024 0.005 ∞ N/A 60 50 86.64
QQP Prompt Base 1024 0.05 8 0.1 10 7 82.58
QQP Prompt Base 1024 0.001 3 0.01 100 15 80.29
QQP Prompt Large 2048 0.005 8 0.05 100 10 82.29
QQP Prefix Base 1024 0.005 ∞ N/A 60 20 91.42
QQP Prefix Base 1024 0.05 8 0.1 10 7 82.59
QQP Prefix Base 1024 0.05 3 1 15 2 80.89
QQP Prefix Large 2048 0.05 8 0.1 10 7 83.50

MNLI Prompt Base 32 0.001 ∞ N/A 60 20 82.49
MNLI Prompt Base 1024 0.005 8 0.05 60 10 75.01
MNLI Prompt Base 1024 0.005 3 0.05 100 10 73.97
MNLI Prompt Large 2048 0.005 8 0.2 60 10 76.05
MNLI Prefix Base 32 0.001 ∞ N/A 60 20 82.49
MNLI Prefix Base 1024 0.005 8 0.05 60 50 80.42
MNLI Prefix Base 1024 0.005 3 0.2 100 50 80.10
MNLI Prefix Large 2048 0.01 8 0.1 100 10 86.71

Table 6: Detailed parameters for soft prompts and prefix. Type is the type of training, BS
represents the batch size, LR denotes the learning rate, ε is the DP guarantee, P-Length is the token
length of soft-prompt or prefix.

LLM Dataset T σ1 σ2

GPT3 sst2 180 1 20
GPT3 agnews 180 5 20
GPT3 trec 180 1 20
GPT3 dbpedia 170 1 20

Claude sst2 390 1 50
Claude agnews 360 1 50
Claude trec 320 1 50
Claude dbpedia 320 5 50

Table 7: Detailed parameters for Confident-GNMax.
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Figure 6: MIA against the public prompts of PromptPATE. We depict the AUC-ROC curve of
MIA against the public prompts of PromptPATE. The member data is the examples from the prompts
of all private teachers, and the non-members are randomly-selected data from the training set. Each
blue curve corresponds to a different public prompt selected in one random trail. All curves are very
close to the red dash line (random guess), which show that our PromptPATE is effective against MIA.
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