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Abstract

Machine learning (ML) models have been shown to leak pri-
vate information from their training datasets. Differential Pri-
vacy (DP), typically implemented through the differential pri-
vate stochastic gradient descent algorithm (DP-SGD), has be-
come the standard solution to bound leakage from the models.
Despite recent improvements, DP-SGD-based approaches for
private learning still usually struggle in the high privacy
(ε ≤ 1) and low data regimes, and when the private training
datasets are imbalanced. To overcome these limitations, we
propose Differentially Private Prototype Learning (DPPL) as
a new paradigm for private transfer learning. DPPL leverages
publicly pre-trained encoders to extract features from private
data and generates DP prototypes that represent each private
class in the embedding space and can be publicly released for
inference. Since our DP prototypes can be obtained from only
a few private training data points and without iterative noise
addition, they offer high-utility predictions and strong privacy
guarantees even under the notion of pure DP. We additionally
show that privacy-utility trade-offs can be further improved
when leveraging the public data beyond pre-training of the
encoder: in particular, we can privately sample our DP proto-
types from the publicly available data points used to train the
encoder. Our experimental evaluation with four state-of-the-
art encoders, four vision datasets, and under different data
and imbalancedness regimes demonstrate DPPL’s high per-
formance under strong privacy guarantees in challenging pri-
vate learning setups.

1 Introduction
Machine learning (ML) models are known to leak private in-
formation about their training datasets (Carlini et al. 2022;
Fredrikson, Jha, and Ristenpart 2015; Shokri et al. 2017).
As a solution to provably upper-bound privacy leakage, dif-
ferential privacy (DP) (Dwork et al. 2006) has emerged as
the de-facto standard for private training. It is usually imple-
mented in ML through the differential private stochastic gra-
dient descent (DP-SGD) algorithm which bounds the con-
tribution of each data point during training and iteratively
injects controlled amounts of noise (Abadi et al. 2016).
Thereby, DP-SGD has been shown to increase training time
and decrease the final model’s utility.
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While, over the last years, there has been significant
progress in improving both computational efficiency (Bu
et al. 2021; He et al. 2022a; Li et al. 2021; Lee and Kifer
2021; Subramani, Vadivelu, and Kamath 2021) and privacy-
utility trade-offs (Bu, Mao, and Xu 2022; De et al. 2022),
there are a few relevant setups where DP training still yields
unfavorable results. These include the high privacy regime
(expressed in DP with small values of the privacy parameter
ε, such as ε ≤ 1), the low data regime, i.e., when only a few
private data points are available for training, and when the
training dataset is imbalanced, i.e., when some classes have
significantly more data points than others (Buda, Maki, and
Mazurowski 2018; Liu et al. 2019; Reed 2001).

There are various reasons why DP training is challenging
in these setups (Feldman 2020; Esipova et al. 2023). One
of these is that DP protects small sets of examples due to
its “group privacy” property, providing a provable bound on
how much a DP algorithm can learn from small data (Feld-
man 2020). Beyond this concern, the iterative noise addition
weakens the signal from the training data, especially when
only a few training data points are available. Moreover, stan-
dard approaches for learning in imbalanced setups, such
as changing the sampling (Domingos 1999; Kubat, Matwin
et al. 1997; Japkowicz 2000; Lewis and Catlett 1994; Ling
and Li 1998; Zada, Benou, and Irani 2022), generating syn-
thetic data for the minority classes (Chawla et al. 2002), or
weighing the training loss (Cao et al. 2019) are not directly
compatible with DP or incur additional privacy costs. In a
similar vein, each training iteration with DP training incurs
additional privacy costs (Abadi et al. 2016), making it hard
to keep ε low, i.e., to stay in the high privacy regime.

To address all of these challenges, we propose Differential
Private Prototype Learning (DPPL), a novel approach for
private learning that combines prototypical networks (Snell,
Swersky, and Zemel 2017), a standard algorithm for non-
private few shot learning, with recent advances in train-
ing high-performance private models with DP that leverage
powerful encoder models pre-trained on public data (Caron
et al. 2021; He et al. 2022b; Radford et al. 2021) combined
with private transfer learning (Li et al. 2021; Yu et al. 2021;
Gu, Kamath, and Wu 2022; Tramèr, Kamath, and Carlini
2022; Ganesh et al. 2023; Hu et al. 2021; Houlsby et al.
2019; Li et al. 2023; Mehta et al. 2023). The main idea of
our DPPL is to use the encoder as a feature extractor for the
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Figure 1: Overview of DPPL. We split the private data X
per class c into Xc’s, infer them through a publicly pre-
trained encoder, and estimate per-class prototypes pc in the
embedding space with DP. Classification of samples is per-
formed by returning the label of the closest prototype pc in
the embedding space according to some distance function d.

private data and to generate DP prototypes in the embedding
space for each private class. To classify new data points, we
then simply have to infer these points through the encoder
and to return the label of the closest prototype.

Relying on DP prototypes for private learning offers sig-
nificant advantages over iterative private training or fine-
tuning. First, our prototypes do not require iterative noise ad-
dition. This enables to obtain less noisy predictions at lower
privacy costs and improves privacy-utility trade-offs in the
high privacy regime. Second, the prototypes are inherently
balanced, i.e., it is possible to obtain good prototypes also
at the low data regime or for underrepresented classes from
imbalanced private training datasets. Third, DP prototypes
are fast to obtain, enable fast inference, and, due to the DP
post-processing guarantees—which express that no query to
them will incur additional privacy costs—can be publicly re-
leased for performing predictions.

We propose multiple algorithms for obtaining DP pro-
totypes, and find that prior approaches for training models
with DP do not yet leverage the full capacity of the public
data (Li et al. 2021; Yu et al. 2021; Mehta et al. 2023): these
prior approaches use the public data only for pre-training the
encoder. Yet, we make the observation that we can leverage
the public data additionally during the transfer learning step.
By privately selecting per-class private prototypes from the
public data, we can significantly decrease the privacy costs
of our prototypes (even under the strong notion of pure DP,
i.e., ε-DP) and further improve privacy-utility trade-offs.

By performing thorough experimentation with four state-
of-the-art encoders and four standard vision datasets, we
show that DPPL provides strong utility in the high pri-
vacy regimes. Additionally, we highlight that DPPL is able
to provide good privacy-utility trade-offs when only a few
private training data points are available and that it yields
state-of-the-art performance on imbalanced classification
tasks. Thereby, DPPL represents a new powerful learning
paradigm for private training with DP.

In summary, we make the following contributions:

• We propose DPPL, a novel alternative to private fine-
tuning that combines recent advances in DP transfer
learning with private few shot learning and can even yield
pure DP guarantees.

• We perform extensive empirical evaluation which high-
lights that DPPL yields strong privacy-utility trade-offs,

in particular in the high privacy regime and for imbal-
anced data.

• To further improve DP transfer learning, we show that
we can leverage the public data beyond the pre-training
step of the feature encoder by privately selecting public
prototypes from it.

2 Background
Transfer Learning. We consider transfer learning where a
publicly available pre-trained encoder Ê is used to extract
features X̂ from a (private) dataset D = (X,y). Those fea-
tures are then used to perform downstream classification by
learning a function f maximizing Prx,y∈D[f(Ê(x)) = y].

Differential Privacy. Differential privacy (DP) (Dwork
et al. 2006) is a mathematical framework that provides pri-
vacy guarantees in ML by formalizing the intuition that a
learning algorithm A : I → S, executed on two neighbor-
ing datasets D, D′ that differ in only one data point,i.e.,,
D = D′ ∪ {x} (add/remove DP), will yield roughly the
same output, i.e., Pr[A(D) ∈ S] ≤ eϵ · Pr[A(D′) ∈ S] + δ
(approximate DP). In this inequality, ε is the privacy budget
that specifies by how much the output is allowed to differ
and δ is the probability of differing more. If δ = 0, we re-
fer to it as pure DP, a strictly stronger notion of privacy. We
will also refer to zero-concentrated DP (zCDP) (Bun and
Steinke 2016), which requires that Dα(A(D)||A(D′)) ≤
ξ + ρα ∀α∈(1,∞), where Dα is the Rényi divergence of or-
der α. zCDP is a relaxation of pure DP, but stricter than ap-
proximate DP. (0, ρ)-zCDP can also be expressed simply as
ρ-zCDP. We provide more details on DP in Appendix A.1.
The standard approach for learning ML models with DP
guarantees is differentially private stochastic gradient de-
scent (DPSGD) (Song, Chaudhuri, and Sarwate 2013; Abadi
et al. 2016). DPSGD clips model gradients to a given norm
to limit the impact of individual data points on the model
updates and adds a controlled amount of Gaussian noise to
implement formal privacy guarantees during training.

Exponential Mechanism. The exponential mecha-
nism (McSherry and Talwar 2007) offers a way to imple-
ment pure DP guarantees. Given a set of possible outputs X′,
it samples an output x′ according to some utility function u
with probability Pr[EMu(X) = x̂] ∝ exp

(
ϵ

∆uu(X, x̂)
)
.

This algorithm satisfies 2ϵ-DP. Appendix A.3 shows more
details on the exponential mechanism and utility function.

Prototypical Networks. Prototypical networks (Snell,
Swersky, and Zemel 2017) are used for few-shot classi-
fication, i.e., they provide a way on adapting a classifier
to new unseen classes with access only to a small num-
ber of data points from each new class. Their main com-
ponents are a set of prototypes pc ∈ RM and an embed-
ding function fϕ : RD → RM . Each prototype for a class
c is the mean of the embedded points belonging to that
class, i.e., pc = 1

|Xc|
∑

x∈Xc

fϕ(x). Given a distance func-

tion d : RM × RM → [0,∞), the model classifies a point
x based on its nearest prototype in the embedded space as
ŷ(x) = argmin

c
d(fϕ(x),pc).



DP Mean Estimation. Obtaining differentially private
means µ = 1/n

∑
n x for x ∈ Rd is challenging in high

dimensions. A straightforward approach (Kamath and Ull-
man 2020) consists of clipping all samples to some ℓ2 norm,
adding noise scaled according to the clip norm and then re-
porting the noisy mean of the clipped samples. Friendly-
Core (Tsfadia et al. 2022) is a framework for pre-processing
the input data of private algorithms, such that the algorithms
being executed on this pre-processed data need to be pri-
vate only for relaxed conditions. It improves especially for
the cases where the samples have a high ℓ2 norm and high
dimensionality d. The CoinPress algorithm (Biswas et al.
2020) estimates the mean iteratively, clipping the samples
not w.r.t. the origin but to the estimated mean of the previ-
ous step. This approach is especially useful when the mean
is far away from the origin and generally considered state-
of-the-art for dimensionalities in the low thousands. Fig-
ure 11 shows that the straightforward approach outperforms
all other methods given strong priors on the ℓ2 norms of the
samples. We provide more details in Appendix A.4.

3 Related Work
Private Transfer Learning. Standard approaches for DP
transfer learning rely on the DPSGD algorithm to train a
classifier on top of the representations output by a pre-
trained encoder, and potentially also to privately update ex-
isting or added model parameters on the sensitive data (Yu
et al. 2021; De et al. 2022; Li et al. 2021; Mehta et al. 2022).
Notably, there also exists an approach for transfer learn-
ing from few samples, DP-FiLM introduced by Tobaben
et al. (2023). Such approaches have been shown effective,
for loose DP guarantees (i.e., large ε), yet suffer from severe
utility drops in strong privacy regimes (i.e., with small ε).
This is because of the iterative nature of the DPSGD algo-
rithm with multiple rounds of noise addition that negatively
impact performance. To overcome these limitations, Mehta
et al. (2023) proposed Differentially Private Least Squares
(DP-LS), DP-Newton and DPSGD with Feature Covariance
(DP-FC). DP-LS takes advantage of the closed form solu-
tion for least squares to avoid running many iterations of
gradient descent. DP-Newton employs a second-order opti-
mization to solve the smaller problem of transfer learning
more efficiently. DP-FC integrates second order information
by utilizing the covariance of the features without paying the
composition cost of DP-Newton. All methods have three hy-
perparameters. In contrast to theirs, our method only has a
single optional hyperparameter, does not rely on higher or-
der optimization and utilizes parallel composition to solve
each class independently in a single iteration, resulting in
lower privacy costs especially for imbalanced datasets.

Leveraging Public Data for Private Training. Pub-
lic data has, so far, been leveraged for privacy-preserving
knowledge transfer to protect sensitive data (Papernot et al.
2017, 2018), to reduce the sample complexity within DP
distribution learning (Bie, Kamath, and Singhal 2022; Ben-
David et al. 2024), and for pre-training public encoders to
then perform private transfer learning (Li et al. 2021; Yu
et al. 2021; Gu, Kamath, and Wu 2022; Tramèr, Kamath, and
Carlini 2022; Ganesh et al. 2023; Hu et al. 2021; Houlsby

et al. 2019; Li et al. 2023; Mehta et al. 2023). In a sim-
ilar vein as previous work that determines the importance
of public samples to private data (Ji and Elkan 2013), our
approach goes beyond the latter and additionally leverages
the public pre-training data of the encoder during the pri-
vate transfer learning step by selecting public prototypes to
represent our private classes.

Private Training on Unbalanced Datasets. DP has been
shown to disproportionately harm utility for underrepre-
sented sub-groups, i.e., groups with fewer data points (Bag-
dasaryan, Poursaeed, and Shmatikov 2019; Suriyakumar
et al. 2021). This is because the weak signal from these
groups is more affected by the added noise. Additionally,
the clipping operation in DPSGD changes the direction of
the overall gradient, which adds a compounding bias over
the runtime of the training, that disproportionally affects mi-
nority classes (Esipova et al. 2023). To mitigate this issue,
Esipova et al. (2023) propose DPSGD-Global-Adapt, which
clips only some gradients and instead scales most gradients,
thus preserving the overall direction. The algorithm adap-
tively learns the clipping threshold, keeping the amount of
clipped gradients low. Another approach is to add fairness
through in- or post-processing (Jagielski et al. 2019), which
trades off accuracy against fairness and requires additional
privacy budget. In a non-private setting, solutions for im-
proving utility of small subgroups include changing the sam-
pling (Domingos 1999; Kubat, Matwin et al. 1997; Japkow-
icz 2000; Lewis and Catlett 1994; Ling and Li 1998; Zada,
Benou, and Irani 2022), generating synthetic data for the mi-
nority classes (Chawla et al. 2002; Wang et al. 2018), or
weighing the training loss (Cao et al. 2019). However, these
approaches are not directly compatible with DP or incur ad-
ditional privacy costs.

4 Differentially Private Prototyping
Setup and Assumptions. We aim at learning a private clas-
sifier based on a sensitive labeled dataset D = (X,y) with
C different classes. We assume the availability of a stan-
dard public pre-trained vision encoder M̂ , such as DINO1 or
MAE2 encoders, that return high-dimensional feature vec-
tors for their input data points. Additionally, we assume
the availability of a general purpose public dataset D̂ =

(X̂, . . . ), such as ImageNet (Deng et al. 2009). Note that
D̂ can also be from a different distribution than D and M̂ ’s
pre-training data, as we show experimentally in Figure 8a,
and does not require labels. In case of available labels for
D̂, we just discard them.

Overview. Our goal is to obtain private prototypes
p1, . . .pC that represent every class C from the private
dataset D in the embedding space. To classify a new unseen
data point x′, we simply have to retrieve the most represen-
tative prototype and return its label. Concretely, we have to
infer x′ through the encoder M̂ , retrieve the prototype with
the minimum distance in embedding space to x′ and return

1https://github.com/facebookresearch/dinov2
2https://github.com/facebookresearch/mae



its label as the prediction y′ = min
c∈C

d(M̂(x′),pc). We detail

the general approach in Figure 1.
Note that if the private prototypes are obtained with DP

guarantees, using them for predictions will not incur addi-
tional privacy costs due to the DP post-processing guaran-
tees. Hence, our DP prototypes can be publicly released,
similar to privately trained ML models. We experimented
with multiple ways for implementing DP prototypes and
identified the two most promising approaches: DPPL-Mean
generates a private prototype by calculating a DP mean on
all data points of a given class in the embedding space. Our
DPPL-Public takes advantage of the public dataset D̂ and
privately selects a data point from D̂ to act as a prototype for
each private class.

4.1 DPPL-Mean: Private Means
Intuition. Non-private prototypical networks (Snell, Swer-
sky, and Zemel 2017) consist of two steps, namely the train-
ing of a projection layer at the output of the encoder and
the estimation of the class prototypes. In the private setup,
both these steps would depend on the private data and there-
fore each incur additional privacy costs. To keep privacy cost
low, we forgo projection layer training, as we find it is un-
necessary when given a strong pre-trained encoder (see Ap-
pendix C.6). Hence, for our private DPPL-Mean, we only
implement the estimation of the prototypes without projec-
tion.

Non-Private Means. Given a training class c and corre-
sponding samples Xc ∈ Rnc×d, the non-private prototype of
each class is the mean of the embeddings 1

nc

∑nc

i=0 M̂(xi)

Our DPPL-Mean: Private Means. To privately estimate
the means, we rely on the Gaussian Mechanism. We first clip
each xi ∈ Rd to a ℓ2 norm r. The estimate is then

pc = N
(
0,

2r2

n2
cρ

)
+

1

nc

nc∑
i=0

M̂(clipℓ2(xi), r) (1)

where ρ is the zCDP privacy budget. To improve the utility
at strict privacy budgets, we include a single optional hyper-
parameter kpool ≥ 1, describing the kernel size of an average
pooling layer before the mean estimation to reduce dimen-
sionality, reducing the dimension from d to d/kpool.

Privacy Analysis. The privacy analysis of DPPL-Mean
follows the analysis of the Gaussian Mechanism. By clip-
ping each sample to ℓ2 norm of r we obtain ∆pc = 2r/n,
since the ℓ2 distance between the previous mean and any
new sample can be 2r at maximum and its influence dimin-
ishes with the number of samples n. We use parallel compo-
sition: each disjoint class computes a ρ-zCDP mean proto-
type, making the privacy cost ρ for the entire private dataset.

4.2 DPPL-Public: Privately Selecting Public
Prototypes

Intuition. Our main idea for DPPL-Public is to leverage
public data beyond the pre-training stage for learning a pri-
vate classifier based on the sensitive data. Therefore, we pri-
vately select public prototypes for each training class, i.e.,

a data point from the public dataset that represent the given
class well.

Non-Private Selection. A good public prototype x̂c for a
given training class c represents that class well in the embed-
ding space of encoder M̂ . To select such a good prototype
per class, we first calculate the embeddings E = M̂(X)

and Ê = M̂(X̂) for the private and public data points, re-
spectively. Then, based on the private labels y, we split the
embeddings of X in C subsets E1, . . . ,EC . Without any pri-
vacy considerations, a public prototype x̂c for class c could
then be chosen as the data point that minimizes the average
distance according to metric d, to all training data points xi

in class c as

x̂c = min
x̂∈X̂

∑|Xc|
i=0 d(M̂(xi), M̂(x̂))

|Xc|
. (2)

Our DPPL-Public: Private Selection. The previously
described approach, however, does not take any privacy of
the training data D into account. To perform public proto-
type selection with ε-DP guarantees, we rely on the expo-
nential mechanism (McSherry and Talwar 2007). We use the
cosine similarity and add +1 as our distance metric d, there-
fore obtaining a bounded and non-negative metric in [0, 2].
The utility function that indicates the goodness of each each
public sample for a given class c is

u(x̂, c) =

|Xc|∑
i=0

1 +
M̂(xi) · M̂(x̂)

∥M̂(xi)∥∥M̂(x̂)∥
. (3)

To improve utility at strict privacy budgets, we include two
optional hyperparameters dmax ∈ (0, 2] and dmin ∈ [0, dmax),
which clips the distances to [dmin, dmax], reducing the sensi-
tivity to ∆u = dmax − dmin.

We detail the full algorithm for privately selecting public
prototypes in Algorithm 1.

Algorithm 1: Privately Select Public Prototypes
Input: Private dataset D = (X,y) with C classes,

privacy budget ϵ, public pre-trained encoder
M̂ , public dataset D̂ = (X̂, . . . ),
hyperparameters dmax,dmin

Output: Prototypes P = {pc ∈ D̂|c ∈ y}
Function SelectPublicPrototypes():

E←M(X) Ê←M(X̂) foreach class c ∈ C do
Ec ← {ei ∈ E|yi = c}
uc(x̂i) =

∑
e∈Ec

clip(1 + e·êi

eêi
, dmax, dmin);

pc ∝ exp ( ϵuc

dmax−dmin
)

return {pc|c ∈ y};

Privacy Analysis. Our proposed DPPL-Public ful-
fills ε-DP. We provide a sketch of the full proof from Ap-
pendix D.1 here. We first note that ∆u = dmax − dmin.
As mentioned above, we add +1 to each cosine similar-
ity, which is therefore non-negative. Therefore, u is posi-
tively monotonic w.r.t. X. The exponential mechanism with



Pr[EM(X) = x̂] ∝ exp εu(X,x̂)
∆u is ε-DP if u is monotonic

w.r.t. the private data X (McSherry and Talwar 2007). There-
fore, executing DPPL-Public on a single class yields ε-
DP. Additionally, since we calculate prototypes per-class
and the classes are non-overlapping, parallel composition
applies, i.e.,, the total privacy costs are also ε-DP.

5 Empirical Evaluation

Experiment Setup. We experiment with CI-
FAR10 (Krizhevsky 2009), CIFAR100 (Krizhevsky 2009),
STL10 (Coates, Ng, and Lee 2011) and FOOD101 (Bossard,
Guillaumin, and Van Gool 2014) as private datasets. From
these datasets, we construct exponentially long-tailed
imbalanced datasets with various imbalance ratios (IRs),
the ratio between the number of samples in the largest and
smallest class, following Cui et al. (2019) and Cao et al.
(2019). Concretely, the number of samples in each class
decreases exponentially with a factor of n(c) = exp(−cλ),
where λ = log(IR)/C. For the balanced case(IR = 1),
λ = log(1)/C = 0 and therefore n(c) = 1∀c. We detail the
imbalancing process and depict the effect on the resulting
absolute class sizes per dataset further in Appendix B.2. We
compare our DP prototypes on the features obtained from
three vision transformers based on the original architecture
from Dosovitskiy et al. (2020) Vit-B-16 (Singh et al. 2022),
namely ViT-L-16 (Oquab et al. 2023), ViT-H-14 (Singh
et al. 2022) and a ResNet-50 (Caron et al. 2021; He et al.
2016). All models, except for ViT-L-16, which is trained on
LVD-142M introduced by Oquab et al. (2023), are trained
on ImageNet-1K (Deng et al. 2009). For DPPL-Public,
we use the 64 × 64 downscaled version of ImageNet-1K
upscaled to between 128 × 128 and 512 × 512 depending
on the encoder. Notably, we evaluate our methods on the
standard balanced test set. This corresponds to report-
ing a balanced accuracy for the imbalanced setups. A
full description of our experimental setup is provided in
Appendix B.

Baselines. For the baseline comparisons we compare to
standard linear probing with DPSGD, as it’s a common way
of DP transfer-learning. Furthermore, we compare to DP-LS
from Mehta et al. (2023) which is the current state-of-the-
art for DP transfer learning across all privacy regimes and
to DPSGD-Global-Adapt from Esipova et al. (2023) as it is
specifically designed for for training on imbalanced datasets.
We outline in Appendix E.4 the experimentally-supported
reasons against including DP-FC and DP-FiLM.

Comparing Results over Different Notions of DP. Since
we are comparing our new proposed methods that imple-
ment pure DP or pure ρ-zCDP guarantees against other
baselines that also implement zCDP, we convert all privacy
guarantees to ρ-zCDP. We also present a pure-DP ε equiva-
lent by inverting the ρ = ϵ2/2 conversion from pure DP to
zCDP. However, this does not imply that these algorithms
fulfil pure DP. We detail all comparison implementations
and conversion theorems used in Appendix D.2.
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Figure 2: DP Prototypes on CIFAR100. We present the bal-
anced test accuracy of our methods vs. standard linear prob-
ing with DP-SGD on CIFAR100 and ViT-H-14 at different
levels of imbalance rations (IR), using ImageNet as public
data for DPPL-Public. We plot the mean test accuracy
over multiple runs and represent the upper and lower quan-
tiles for all methods by the dotted lines.

5.1 DP Prototypes: High Utility in High Privacy
and Extreme Imbalance

We evaluate our DP prototypes at different privacy
regimes in the range corresponding to standard approximate
DP (Dwork et al. 2006) of 0.01 < ε < 100 and under dif-
ferent IRs. In Figure 2, we benchmark our methods vs. stan-
dard DP linear probing on CIFAR100 with ViT-H-14. Our
results highlight that over all levels of IRs larger than 1, our
DPPL-Public significantly outperforms linear probing in
all privacy regimes. Additionally DPPL-Public yields
strong performance already at very low ε, such as ε = 0.1
for IR=1. As data becomes more imbalanced, all methods
require larger privacy budgets to yield similarly high perfor-
mance. Further, our results indicate that our DPPL-Mean
method underperforms DPPL-Public and DP linear prob-
ing for low ε. We find that this results from the noise added
during the mean calculation leading diverging estimations.
We provide further detail on the cause in Appendix C.2. Yet,
we observe that at higher epsilon, DPPL-Mean outperforms
DPPL-Public. This suggests that the most beneficial way
for leveraging DP prototypes might be an adaptive method
where DPPL-Public is chosen for high performance in
the high privacy regimes and DPPL-Mean can further boost
performance for larger ε.

We further assess whether the observed trend holds over
different datasets. Therefore, we depict the results of our
methods vs. standard DP linear probing for different datasets
and the ViT-H-14 encoder under the most challenging setup
with IR= 100 in Figure 3. The observed trends are indeed
consistent between all datasets. We provide full results over
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Figure 3: DP Prototypes on various imbalanced datasets.
We present the balanced test accuracy for CIFAR10, CI-
FAR100, FOOD101 and STL10 at an imbalance ratio
of 100 on ViT-H-14, using ImageNet as public data for
DPPL-Public. We compare to standard Linear Probing
with DP-SGD. We plot the mean test accuracy over multiple
runs and represent the upper/lower quantiles by the dotted
lines. Appendix E.1 shows more results.

all datasets and IRs in Appendix E.1.

5.2 DP Prototypes Improve over State-of-the-Art
Baselines in Imbalanced Setups

We further benchmark our methods against DP-LS, the
current state-of-the-art method for private transfer learning
by Mehta et al. (2023), and DPSGD-Global-Adapt by Es-
ipova et al. (2023), a DP method deliberately designed to
achieve high utility under imbalancedness of the private
data. Our results in Figure 4 highlight that while in the
balanced setup, Mehta et al. (2023) outperforms the other
methods, our DP prototypes outperform all other meth-
ods the more imbalanced the setup becomes. In particular
DPPL-Public outperforms in high privacy regimes (i.e.,
for small ε), while DPPL-Mean is better in lower privacy
regimes, mostly outperforming even DPSGD-Global-Adapt.

The advantage of our methods against the baselines be-
come even more obvious as we do not consider the ac-
curacy over the entire balanced test set (equivalent to bal-
anced accuracy), but look specifically at accuracy on mi-
nority classes, see Figure 5. Therefore, we take the smallest
25% of training classes in terms of number of their training
data points and measure their accuracy on a balanced test set
consisting of only those classes. Our results for CIFAR100
on ViT-H-14 under IR= 50 in Figure 5 highlight that our
DP prototypes significantly outperform all baselines. Full re-
sults for the minority classes are depicted in Appendix E.2.

5.3 Understanding the Success of DP Prototypes
To better understand the success of our DP prototypes, we
perform various ablations. The full set of ablations and their
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Figure 4: Comparing against baselines on CIFAR100. We
present the results of our methods vs. state-of-the-art meth-
ods (DP-LS and DPSGD-Global-Adapt) on the CIFAR100
dataset using ViT-H-14 under different IRs. DPPL-Public
uses ImageNet as public data. Dotted lines represent the up-
per/lower quantiles. Similar results for CIFAR10, Food101,
and STL10 are presented in Appendix E.1.
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Figure 5: Accuracies of the minority classes. We depict the
test accuracy on CIFAR100 with ViT-H-14 embeddings for
the minority classes (smallest 25% of classes) at IR = 50.

results is presented in Appendix C.

Effect of the Publicly Pre-trained Encoder. We first as-
sess the impact of the encoder used as a feature extractor.
Therefore, we apply our method and the baselines with dif-
ferent encoder architectures. Our results in Figure 6 high-
light that the encoder performance impacts all methods
alike. In particular, we observe that all methods obtain bet-
ter results with stronger encoders. For example, the ViT-H-
14 yields to significantly higher private prediction accuracy
that the much smaller ViT-B-16. Additionally, none of the
methods yields satisfactory results using the ResNet50.

Impact of the Projection Layer. We evaluate whether
a projection layer, usually part of a prototypical network,
can increase the utility. We present our results in Figure 7
for CIFAR100 on ViT-H-14, using ImageNet as public for
DPPL-Public. They highlight that DPPL-Public does
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Figure 6: Choice of Encoder. We report the test accuracy
for our methods and the baselines for CIFAR100, using Im-
ageNet as public data for DPPL-Public. We observe that
the success of all methods depends on the quality of the un-
derlying encoder.

not benefit from the projection. Even non-privately (ϵ =∞),
the accuracy of DPPL-Public with projection is 72.6%
and without projection is 74.0%, showing that it is not just
the decreased privacy budget for the sampling that reduces
the utility, but a fundamental misalignment between how
the projection is trained and the public prototyping. We ob-
serve the same effect for DPPL-Mean and conclude that,
although this limits adaptability (see Appendix F.2), with a
strong enough pre-trained encoder, it is sufficient for DPPL
to estimate prototypes without projection.

Improving through Multiple Per-Class Prototypes. We
experiment with extending our DPPL-Public beyond a
single per-class prototype—the common standard for pro-
totypical networks. Therefore, we introduce the variation
DPPL-PublicK which selects the top-K public prototypes
per class. We extend the algorithm from Gillenwater et al.
(2022) to sample multiple prototypes jointly using the ex-
ponential mechanism. Then, we classify based on the mean
distance to each class’s prototype. Our results in Figure 14
show that DPPL-PublicK’s privacy-utility trade-offs are
between DPPL-Mean and DPPL-Public, indicating that
the private means can be —to a certain degree— approx-
imated by multiple public prototypes. DPPL-PublicK
could therefore replace DPPL-Mean in cases of high di-
mensionality, where a mean estimation is not feasible. We
provide more details, privacy proof, and a full set of results
in Appendix C.3.

Impact of the Public Data for Prototype Selection. To
assess whether the public data for prototype estimation
needs to be from the same distribution as the one used
to pre-train the encoder, we conduct experiments with a
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Figure 7: Impact of the Projection Layer.
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Figure 8: Impact of the Public Data.

different public dataset. We evaluate DPPL-Public us-
ing 2,298,112 samples from CC3M introduced by Sharma
et al. (2018) as public data instead of ImageNet which is
used to pre-train the encoder. We show the relation between
the accuracy using ImageNet as public data and CC3M
in Figure 8a for CIFAR100 on ViT-H-14. We find that
DPPL-Public works well with both public datasets, high-
lighting the flexibility of our approach. Still, we observe that
ImageNet yields better results which suggests that it is par-
ticularly beneficial to leverage the public data already avail-
able for pre-training also in the private transfer learning step.

Size of the Public Dataset for DPPL-Public. We also
evaluate the success of DPPL-Public for different sizes
of the public dataset that the public prototypes can be cho-
sen from. Therefore, we randomly draw subsets of different
sizes from ImageNet and apply DPPL-Public. Our results
for CIFAR100 (100 classes) and ViT-H-14 in Figure 8b in-
dicate that with growing public dataset size, our method’s
success increases. Figure 10 shows that tasks less similar to
the pretraining data are more sensitive to dataset size. Note
that even for public dataset of more than one million im-
ages, the selection of our public prototypes for 100 classes
(i.e., the ”training”) takes 34.3 seconds on a single GPU as
we depict in Appendix E.3. For 10 classes (e.g., CIFAR10),
it takes 5 seconds. Hence, choosing a larger public dataset
does not represent a practical limitation.

6 Conclusions and Future Work
We propose DPPL as a novel alternative to private fine-
tuning with DP. DPPL builds DP prototypes on top of fea-
tures extracted by a publicly pre-trained encoder, that can
be later used as a classifier. The prototypes can be obtained
without iterative noise addition and yield high utility even in



high-privacy regimes, with few private training data points,
and in unbalanced training setups. We show that we can fur-
ther boost performance of our DP prototypes by leveraging
the public data beyond training of the encoder and using
them to draw the public prototypes from (DPPL-Public).
Future work at improving utility of high-dimensional DP
mean estimation will benefit our DPPL-Mean, which can,
in the future, serve as an additional benchmark for private
mean estimation algorithms.
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A Extended Background
A.1 Differential Privacy
Definition 1 ((ξ, ρ)-zCDP from Bun and Steinke (2016))
A randomised mechanism M : Xn → Y is (ξ, ρ)-zero-
concentrated differentially private (henceforth (ξ, ρ)-zCDP)
if, for all x, x′ ∈ Xn differing on a single entry and all
α ∈ (1,∞),

Dα (M(x)∥M (x′)) ≤ ξ + ρα,

where Dα (M(x)∥M (x′)) is the α-Rényi divergence be-
tween the distribution of M(x) and the distribution of
M (x′).

(0, ρ)-zCDP can also be expressed simply as ρ-zCDP.

Definition 2 ((α, ϵ)-RDP from Mironov (2017)) A ran-
domized mechanism f : D 7→ R is said to have ϵ-Rényi
differential privacy of order α, or (α, ϵ)-RDP for short, if
for any adjacent D,D′ ∈ D it holds that

Dα (f(D)∥f (D′)) ≤ ϵ.

Definition 3 (µ-GDP from Dong, Roth, and Su (2019))
A randomized mechanism M : D 7→ R is said to have
µ-Gaussian differential privacy, µ-GDP for short, if it
operates on a statistic Θ as

M(D) = Θ(D) + ξ

where ξ ∼ N (0, sens(θ)2/µ2)

Theorem 1 (Parallel composition from McSherry (2009))
Let Mi each provide ϵ-differential privacy. Let Di be arbi-
trary disjoint subsets of the input domain D. The sequence
of Mi (X ∩Di) provides ϵ-differential privacy.

A.2 The Gaussian Mechanism
Proposition 2 (Cesar and Rogers (2021)) Let q : Xn →
R be a sensitivity-∆ query. Consider the mechanism M :
Xn → R that on input x, releases a sample from
N
(
q(x), σ2

)
. Then M satisfies

(
∆2/2σ2

)
-zCDP.

A.3 The Exponential Mechanism
The exponential mechanism (McSherry and Talwar 2007)
aims to give the best output x̂ ∈ X̂ w.r.t. a utility function
u(X, x̂) : X× X̂→ R where X is a private dataset and X̂ a
public dataset. It can be described as a randomized mapping
EMu : X→ X̂ where

P [EMu(X) = x̂] ∝ exp
( ϵ

∆u
u(X, x̂)

)
(4)

Lemma 1 (McSherry and Talwar (2007)) The exponen-
tial mechanism is 2ϵ-DP.

Definition 4 A utility function U(D,x) is posi-
tively (negatively) monotonic if for any point x
and any datasets D and D′, U(D,x) ≤ U(D ∪
D′,x) (U(D,x) ≥ U(D ∪D′,x)).

Lemma 2 (McSherry and Talwar (2007)) Given a mono-
tonic utility function, the exponential mechanism is ϵ-DP.

The exponential mechanism fulfils not only differential pri-
vacy, but also the stricter bounded range (Durfee and Rogers
2019). Using a monotonic utility function leads to an im-
proved privacy bound because the sensitivity and range of
monotonic functions are equal (Dong, Durfee, and Rogers
2020).
Lemma 3 (Cesar and Rogers (2021)) The ϵ-DP exponen-
tial mechanism is ϵ2/8-zCDP.

A.4 Private Mean Estimation
For the mean estimation, we investigated both CoinPress
and a naı̈ve estimator based on the Gaussian Mechanism.
While both provide zCDP, CoinPress provides guarantees
for a substitute neighborhood and the Gaussian Mechanism
for a add/remove neighborhood, meaning they are not com-
pared under the same guarantees.

CoinPress The CoinPress algorithm (Dong, Durfee, and
Rogers 2020) aims to privately estimate the mean µ =
1/n

∑
n x for some private x ∈ Rd. Each step is initiated

with a center ci and radius ri with ||µ − ci||2 ≤ ri. Com-
monly used for (r0, c0) are (

√
d,0). All points further away

from ci than ri+γ, where γ is chosen s.t. Pr[||N (0, d)||2 <
γ] ≥ 0.99 are ℓ2-clipped to ri+γ. Finally, Gaussian noise is
added to all points. Then ci+1 is the mean of the noised and
clipped points and ri+1 defined through the new Gaussian
tailbounds of the points.

Naı̈ve We formulate the mean estimation problem as a pri-
vate query q(X) : Rn×d → Rd that we want to release from
the private database X where

q(X) =
1

∥X∥
∑
x∈X

x (5)

Without further bounds, this query cannot satisfy Differen-
tial Privacy. We therefore clip all x ∈ X to some ℓ2 norm r
to obtain X = {clipℓ2(x, r)|x ∈ X} . From this we obtain

∆q(X) =
2r

n
. (6)

and using Theorem 2 a ρ-zCDP mean estimation query qρ as

qρ(X) = q(X) +N (0, 2r2/(n2ρ)). (7)

To finally obtain a mean pc for each class c ∈ C while ful-
filling ρ-zCDP with respect to the entirety of X, we utilize
parallel composition (Theorem 1) over the disjoint class sub-
sets Xc.

B Extended Experimental Setup
B.1 Computational Resources and Libraries
Our implementation is in Jax (Bradbury et al. 2018) v.0.4.31
with CUDA12. Private linear probing was conducted with
PyTorch (Paszke et al. 2019) v.2.3.1 and made private us-
ing the Opacus (Yousefpour et al. 2021) v.1.5.2 privacy en-
gine. We relied on Optuna (Akiba et al. 2019) v.3.6.1 using
the Tree-structured Parzen Estimator (Bergstra et al. 2011)
for all algorithmic hyperparameter optimizations. Convert-
ing and visualizing privacy guarantees was done in part with



Dataset Imbalance Ratio
1 10 50 100

Median Min Median Min Median Min Median Min
CIFAR10 5000 1594 500 724 100 517 50
CIFAR100 500 158 50 71 10 50 5
FOOD101 750 237 75 106 15 75 8
STL10 500 160 50 73 10 52 5
FLOWERS101 1 3 1 7 1 10 1

Table 1: Number of data points over different rations
of imbalance. Median and average number of samples per
class for each dataset and imbalance ratio. We construct the
imbalanced datasets as described in Cui et al. (2019) and
subsequently Cao et al. (2019) (Exponential Long-Tailed).
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Figure 9: Visualizing the effect of the imbalance on CI-
FAR10. We order the classes by the number of correspond-
ing samples and plot them. The classes right of the dotted
line are considered to be the minority classes.

AutoDP (Wang, Balle, and Kasiviswanathan 2019; Zhu and
Wang 2019) v.0.2.3.1. Scaling the experiments has been
aided by Ray (Moritz et al. 2018) v.2.23.0 and Dask (Rock-
lin 2015) v.2024.8.0. Configurations were handled by Hydra
(Yadan 2019) v.1.3.2. The experiments were conducted us-
ing NVIDIA A100 GPUs and an AMD EPYC 7742 64-Core
Processor with 1TB of RAM on Ubuntu 22.04 in Python
3.11. In total, obtaining all results required approximately
300 GPU hours, resulting in roughly 105 kWh of electric
energy usage.

B.2 Imbalanced Datasets
We present the distribution of the number of data points per
class in Appendix B.2 and Figure 9

C Ablations
C.1 Public Dataset Size
The public data used for DPPL-Public, ImageNet, con-
sists of 1,281,167 samples. We evalute the impact of using a
smaller public dataset by randomly subsampling. Figure 10
shows the resulting accuracy. The accuracy and amount of
public samples are positively correlated in all cases, but for
some datasets, i.e., CIFAR10, STL10, the accuracy seem-
ingly asymptotically approaches a maximum accuracy. For
FOOD101 it seems ImageNet is not large enough. We note
that the imbalance ratio doesn’t change the amount of public
data required.
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Figure 10: Varying public dataset sizes for DPPL-
Public. We randomly subsample the public dataset, limit-
ing DPPL-Public’s prototype selection to fewer samples,
and evaluate the resulting changes in accuracy. Tasks with
less similarity to the pretraining dataset, e.g., FOOD101, are
more sensitive to dataset size.

C.2 Comparing Different Mean Estimations
We find that the naı̈ve estimator outperforms CoinPress
given the strong priors on the ℓ2 norms of the embeddings
and the fact that they are generally close to the origin. Fig-
ure 11 compares the accuracy from both mean estimation
methods.

Figure 12 shows how the CoinPress private mean estima-
tion behaves for reasonable and too low privacy levels. For
too low privacy values, the mean estimation breaks down.
We identify the underlying cause as the divergence of the
bounding radius and visualize it in Figure 13. Each succes-
sive radius is supposed to be decreasing in size, successively
bounding the estimated mean to a smaller space. This is
achieved by taking the mean of clipped and noised samples.
The clipping decreases the average norm and thus reduces
the radius. For very low privacy budgets, the noising of the
samples outweighs this effect, and the norms instead grow
with each step, leading to a diverging radius. As we take the
mean of increasingly diverging samples, the estimates of the
mean diverge.

While the naı̈ve estimator also diverges at low privacy
budgets, we find the minimum privacy budget required to
be lower compared to CoinPress.

C.3 Top-K Public Prototyping
Prototypical Networks have been extended to two prototypes
per class, leading to increased generalization and robustness
(Song et al. 2022). We generalize this concept to K proto-
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Figure 11: Comparing CoinPress and naı̈ve mean estima-
tion results for CIFAR100 and ViT-H-14 embeddings.

types per class. We propose our Differentially Private Un-
ordered Top-K Selection as an adaption of the algorithm
from Gillenwater et al. (2022) to sample these multiple pro-
totypes jointly using the exponential mechanism.

Differentially Private Unordered Top-K Selection Let
(u1, . . . , un) be the utilities of the public samples in de-
creasing order and K the number of prototypes to select.
Since the order of the prototypes is not important in this
context, we define the utility U(X, S) of a set of prototypes
S = {uS1 , · · · , uSK

} w.r.t. the private datasets X as

U(X, S) =


−uK +mink∈[K] usk if s1, . . . , sK

are distinct.
−∞ otherwise

(8)

Lemma 4 ∆U = ∆u.

Proof. The choice of −∞ for repeating sequences does not
depend on the private data and therefore doesn’t affect the
sensitivity. Furthermore, the utility of a set is only dependent
on the lowest utility in the set umin and the Kth true best
utility uK . The utility of a set can thus be formulated as
U(X, S) = uK − umin. u is monotonic and has sensitivity
∆u, in other words, insertion of a private sample can only
increase each utility u by a maximum of ∆u. It follows that
insertion or removal of a private sample can only change U
by ±∆u, i.e., ∆U = ∆u

Therefore, each set has the utility of its worst entry, unless
two entries repeat, in which case the utility is −∞ and such
set therefore never selected. If we select the true K-best pro-
totypes, the utility is 0 and otherwise it’s negative. Each util-
ity is not unique. Instead, a utility can occur as many times
as the number of possible combinations of samples with a
higher utility. Given a utility uy , we can therefore obtain the
number of possible sets with that utility

m(uy) =

(
y

K

)
(9)

The entire algorithm then consists of

1. privately sampling a utility uy with P [EM(x) = y] ∝(
y
K

)
exp

ϵuy

2∆U ,
2. fixing the corresponding x̂y as part of the set, and

(a) ρ = 10−3: True vs. DP
means.

(b) ρ = 10−3: Classifica-
tion results.

(c) ρ = 10−4: True vs. DP
means.

(d) ρ = 10−4: Classifica-
tion results.

Figure 12: Visualizing the mean estimation on CIFAR10.
We estimate the means using CoinPress (Biswas et al. 2020)
at ρ ∈ {10−3, 10−4}. On the left, we show the non-private
means and connect them with arrows to the privately es-
timated ones on top of the train set. Colors indicate the
classes. On the right, we show the privately estimated means
and the test set. Green points represent correctly classified
samples, red points misclassified ones.

3. uniformly sampling the remaining K−1 prototypes with-
out replacement, s.t. {x̂i|ui ≥ uy}.

Note that while Lemma 4 implies the sensitivity of u and U
are the same, our effective privacy costs still double, since
U is no longer monotonic. We perform the sampling using
Proposition 5 from Medina and Gillenwater (2021).

C.4 Classification with Multiple Prototypes
Given K multiple prototypes Pc ∈ RK×d for each class c ∈
[C], we classify x based on the minimum average distance

f(x) = argmin
c

1

K

K∑
i=1

d(x,pc,k). (10)

Results We sweep over K ∈ [1, 2, 3, 5, 10, 20] and sort
by balanced train accuracy to find the optimal K per pri-
vacy value, which Figure 19 shows. As we increase the pri-
vacy budget, the optimal accuracy is achieved at increas-
ing K’s. For ρ > 100 all Koptimal converge to K = 10.
In this privacy regime, the Top-K selection behaves essen-
tially as it would non-privately. In this case, it seems to be
detrimental to pick too many prototypes, although we note
the accuracy of K ∈ {5, 10, 20} is almost on par, being
76.7%, 77.1% and 77.2% respectively for ρ = 128. Fig-
ure 14 shows the method requires a privacy budget some-
where between DPPL-Mean and DPPL-Public, while
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Figure 13: Analyzing the steps of CoinPress. We estimate
the means using CoinPress (Biswas et al. 2020) for different
ρ. We see that for low values of ρ, the radius and the esti-
mates diverge.
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Figure 14: Top-K.

having a maximum accuracy also in between the maximum
accuracy of those methods, closer to the higher accuracy of
DPPL-Mean. We show the full set of results in Figures 15
to 18.

C.5 Sampling Mechanisms
We compare two different sampling mechanisms for
DPPL-Public and find that both commonly utilized
mechanisms, the Laplace and Exponential mechanism, pro-
duce very similar results. We show accuracies for various
datasets and privacy budgets in Appendix C.5. In fact, if
the Laplace mechanism is used with a Gumbel noise dis-
tribution, the output distribution of the Laplace mechanism
and Exponential mechanism are identical. This is commonly
referred to as the Gumbel max trick (Rogers and Steinke
2021).

We utilize the Exponential mechanism for its additional
flexibility, which allows us to build DPPL-PublicK as de-
scribed in Appendix C.3.

C.6 Projection
Setup The projection consists of a single layer linear net-
work f : Rdavg → Rdp with no activation function and an
average pooling layer with kernel size pbefore ∈ [1, 64] be-
fore the linear layer. As we leave the total privacy budget ρ
unchanged, we introduce a hyperparameter s ∈ [0.1, 0.9]
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Figure 15: DPPL-Public with Top-K. We present the re-
sults including DPPL-Public Top-K of CIFAR10 on ViT-
B-16, ViT-H-14, ViT-L-16 and ResNet-50, using ImageNet
as public data for DPPL-Public, at different levels of im-
balance rations (IR).

Method \ρ 0.005 0.02 0.125 0.5
CIFAR10 Exponential 91.45 91.33 91.27 91.25

Laplace 91.45 91.33 91.28 91.26
CIFAR100 Exponential 36.36 70.47 72.22 72.75

Laplace 35.89 70.48 72.26 72.72
Food101 Exponential 19.09 53.71 59.19 66.18

Laplace 18.82 53.77 59.21 66.20

Table 2: Comparison between Noisy Max (Laplace Mech-
anism) and Exponential Mechanism for sampling proto-
types.

which defines the privacy budget of the projection layer
ρl = s∗ρ and of the prototype estimation ρp = (1−s)∗ρ. In
total, the hyperparameters are s ∈ [0.1, 0.9], pbefore ∈ [1, 64],
output dimension dp, the number of augments per step n,
batch-size, learning-rate, gradient clipping norm and num-
ber of training steps.

We train the projection with the original training rule from
Snell, Swersky, and Zemel (2017), with some adaptions for
privacy. We perform Bernoulli sampling (often more gen-
erally referred to as Poisson sampling) to receive a batch
B = (X,y). We split (X,y) evenly into support and query
(XS ,yS), (XQ,yQ), s.t. each part has the same number of
samples per class. If a class has only one corresponding sam-
ple in X, we drop it. The prototypes for each class pc are
estimated as the mean of samples in the support set XS that
have the corresponding class label in yS .

XS,c = {xi ∈ XS |yi = c} (11)
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Figure 16: DPPL-Public with Top-K. We present the re-
sults including DPPL-Public Top-K of CIFAR100 on
ViT-B-16, ViT-H-14, ViT-L-16 and ResNet-50, using Ima-
geNet as public data for DPPL-Public, at different levels
of imbalance rations (IR).

pc =
1

|XS,c|
∑

x∈XS,c

x (12)

Then, prototypes and query samples are projected with the
linear layer.

X′
Q = {f(x) | x ∈ XQ} (13)

p′
c = f(pc) (14)

Finally, the model aims to classify each sample in X′
Q by

assigning it the label of the closest prototype

ŷ = {argmin
c

d(p′
c,x

′)|x′ ∈ X′
Q} (15)

We implement the classification training using a log-softmax
over the distances to the prototypes and the negative log like-
lihood loss. This entire process, beginning with the split of
B, is repeated n times, before aggregating the loss and con-
ducting the private gradient descent on the projection layer
weights.

DPPL-Mean For DPPL-Mean we expected the reduction
in dimensionality to potentially improve to utility-privacy-
tradeoff, but instead higher dimensions were strictly better,
leading to the removal of pbefore and dp as hyperparameters.
We show in Figure 20 the distribution of accuracies during
the hyperparameter optimization and that no configuration
reached the performance without projection.

DPPL-Public For DPPL-Public, we additionally need
to project the public data embeddings, to find the proto-
types in the projected latent space. Furthermore, we found
that the utility is strictly lower than without projection. It
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Figure 17: DPPL-Public with Top-K. We present the re-
sults including DPPL-Public Top-K of FOOD101 on
ViT-B-16, ViT-H-14, ViT-L-16 and ResNet-50, using Ima-
geNet as public data for DPPL-Public, at different levels
of imbalance rations (IR).

seems that what the projection layers learns is fundamen-
tally misaligned with the actual task. An obvious mismatch
between training and application of the model is that we take
the means as prototypes pc during training, but we later pick
these prototypes from public data. Even after accounting for
this, and using the actual prototypes during the projection
training, utility didn’t improve.

For both methods, the utility with projection is always
worse Figure 7 shows. The necessary accounting for the pri-
vacy costs of optimizing the additional hyperparameters (Pa-
pernot and Steinke 2021) would further reduce the utility.

D Privacy Proofs and Privacy Conversion
D.1 Full Proof for Privacy Guarantees of

DPPL-Public
We recall that our utility function is

u(x̂, c) =

|Xc|∑
i=0

1 +
M̂(xi) · M̂(x̂)

∥M̂(xi)∥∥M̂(x̂)∥
(16)

where Xc ∈ X are disjoint subsets of the private data X we
want to keep private.

We choose u to be the sum and not, for example, the mean
of the cosine similarity, to make u monotonic w.r.t. X. It
can be easily verified that the two different utility functions
(mean and sum) lead to an identical mechanism, since the
changes in ∆u and u cancel each other out. As we exhaust
the full range [0, 2] of the cosine similarities, we clip each
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Figure 18: DPPL-Public with Top-K. We present the re-
sults including DPPL-Public Top-K of STL10 on ViT-B-
16, ViT-H-14, ViT-L-16 and ResNet-50, using ImageNet as
public data for DPPL-Public, at different levels of imbal-
ance rations (IR).

similarity to [dmin, dmax] and then substract dmin. This gives
us the adapted utility function

u(x̂, c) =

|Xc|∑
i=0

clip

(
1 +

M̂(xi) · M̂(x̂)

∥M̂(xi)∥∥M̂(x̂)∥
, dmin, dmax

)
−dmin

(17)
Lemma 5 ∆u = dmax − dmin and u is positively monotonic
w.r.t. to X.
Proof. Since the cosine similarity’s range is bound to
[0, dmax − dmin], each private sample contributes one non-
negative summand in [0, dmax−dmin]. It immediately follows
that ∆u = dmax − dmin and u is positively monotonic w.r.t.
X.
Theorem 3 DPPL-Public is ε-DP.
Proof. We sample the public prototypes independently for
each class, using a utility function on disjoint sets Xc ∈ X
(each training data point only has one label), s.t. paral-
lel composition applies. Each class prototype is sampled
with the exponential mechanism, with probability Pr[x̂] ∝
exp

(
ϵu(x̂,c)/∆u

)
for outputting x̂ as the class prototype,

with ∆u denoting the sensitivity of u(x̂,c). Our utility func-
tion is monotonic (Lemma 5) and the described exponen-
tial mechanism is ε-DP for monotonic utility functions
(Lemma 2). Since parallel composition applies and each par-
allel algorithm is ε-DP, the overall algorithm is ε-DP.

D.2 Comparing Between Different Notions of DP
Note that to fairly compare our developed method that yields
pure DP guarantees against related work that yield zCDP,
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Figure 19: Optimal K for Top-K
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Figure 20: Results of the hyperparameter sweep of
DPPL-Mean with projection.

we convert our method using Lemma 3. To obtain a ρ-zCDP
guarantee for the Linear Probing and DPSGD-Global-Adapt
baselines, we perform full batch training and obtain the guar-
antee from Theorem 2.

E Additional Experimental Results
E.1 Imbalanced Experiments
We compare the accuracies for all methods, all encoders and
imbalance ratios in [1, 10, 50, 100] in Figures 21 to 24.

E.2 Minority Class Accuracies
We compare the accuracies of the minority classes
for all methods, all encoders and imbalance ratios in
[1, 10, 50, 100] in Figures 25 to 28.

E.3 Computational Runtimes
We compare the runtime for a single training in Ap-
pendix E.3. We chose to compare CIFAR10 and CIFAR100
because the runtime of all methods scale with the number of
classes on otherwise equally large training datasets.

E.4 Potential Baselines
We further considered DP-FC introduced by Mehta et al.
(2023) and DP-FiLM introduced by Tobaben et al. (2023)
as baseline methods.
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Figure 21: DP Prototypes on CIFAR10. We present
the results for CIFAR10 on ViT-B-16, ViT-H-14, ViT-L-
16 and ResNet-50, using ImageNet as public data for
DPPL-Public, at different levels of imbalance rations
(IR). We compare to DP-LS by Mehta et al. (2023) and
DPSGD-Global-Adapt by Esipova et al. (2023). Plotted is
the median over multiple runs and dotted lines represent the
upper and lower quantiles for all methods.

DP-FiLM While DP-FiLM exhibits strong learning po-
tential from few samples, it is an iterative algorithm and
comes with the same drawbacks for unbalanced tasks as DP-
SGD. We conducted initial experiments for which we show
the results in Table 4. We compare DP-FiLM on ViT-H-14
on CIFAR10 and CIFAR100. Both methods were trained
at the same value of ϵ. We set δ for DP-FiLM to 1/2n
where n is the number of training samples. Our method
provides δ = 0 pure DP. We note the significantly lower
utility of DP-FiLM in imbalanced cases and considering the
high computational costs — other methods require training
in the range 10−1 to 102 GPU-seconds, whereas DP-FiLM
requires 105 to 106 GPU-seconds— decided against a com-
prehensive comparison.

DP-FC DP-FC is an iterative optimization algorithm that
integrates second order information by utilizing the covari-
ance of the features. Figure 29 shows results on imbalanced
datasets. While DP-FC slightly outperforms DP-LS for very
strict privacy budgets in balanced cases, it exhibits the same
disparate effects on minority classes as DP-SGD, resulting
in reduced utility for imbalanced cases. Given that it has
only a small advantage in balanced cases and otherwise large
disadvantage in unbalanced cases, we focused on DP-LS as
a non-iterative baseline instead.
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(a) IR=1.
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Figure 22: DP Prototypes on CIFAR100. We present
the results for CIFAR100 on ViT-B-16, ViT-H-14, ViT-
L-16 and ResNet-50, using ImageNet as public data for
DPPL-Public, at different levels of imbalance rations
(IR). We compare to DP-LS by Mehta et al. (2023) and
DPSGD-Global-Adapt by Esipova et al. (2023). Plotted is
the median over multiple runs and dotted lines represent the
upper and lower quantiles for all methods.

F Discussion
F.1 Broader Impacts
We expect the prevalence of machine learning and it’s im-
pact on society to ever increase. Our methods are especially
useful at preserving the privacy of the training data, data that
often consists of sensitive data from users. We consider con-
tributing to an increase in the privacy of the training data
and therefore protecting the users that contribute data to ma-
chine learning models to be a positive societal impact. Fur-
thermore, our methods especially address the use case of im-
balanced datasets. Real-world data is often long-tailed and
models trained on unbalanced data can lead to unfair deci-
sions w.r.t. to gender, ethnicity, disabilities, religion or social
status, especially for minorities. We consider contributing to
an improvement of the utility for minority classes as out-
lined in Figure 5 and Appendix E.2 to be a positive societal
impact.

F.2 Limitations
We introduce DPPL as a novel approach to private transfer
learning. Like all transfer learning methods, our method de-
pends on a suitable base model. We’ve seen that especially
ResNet-50 poses significant challenges, while the vision
transformers worked well. The largest vision transformer
ViT-H-14 yielded the best results of the compared models.
We note that the combination of less suitable base models
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Figure 23: DP Prototypes on STL10. We present the results
for STL10 on ViT-B-16, ViT-H-14, ViT-L-16 and ResNet-
50, using ImageNet as public data for DPPL-Public, at
different levels of imbalance rations (IR). We compare to
DP-LS by Mehta et al. (2023) and DPSGD-Global-Adapt
by Esipova et al. (2023). Plotted is the median over multiple
runs and dotted lines represent the upper and lower quantiles
for all methods.

in addition to further out-of-distribution tasks, relative to the
pre-training data, has a larger negative effect on the perfor-
mance of our method compared to other methods. When
evaluating the most out-of-distribution dataset, FOOD101,
in combination with using embeddings from ResNet-50 or
ViT-B-16, our methods are outperformed (see Figure 24. We
can still claim the highest accuracy for minority classes in
that case (see Figure 28), although the significance of that
given the low utility is questionable. As we didn’t include
the projection layer for our methods, the ability to adapt to
these distribution shifts is limited and possibilities to include
it need to be investigated further.
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Figure 24: DP Prototypes on FOOD101. We present
the results for FOOD101 on ViT-B-16, ViT-H-14, ViT-
L-16 and ResNet-50, using ImageNet as public data for
DPPL-Public, at different levels of imbalance rations
(IR). We compare to DP-LS by Mehta et al. (2023) and
DPSGD-Global-Adapt by Esipova et al. (2023). Plotted is
the median over multiple runs and dotted lines represent the
upper and lower quantiles for all methods.

Step Runtime [s]
CIFAR10 CIFAR100

DPPL-Mean (Ours) Mean Estimation 0.079 0.168
DPPL-Public (Ours) Utility Calculation 5.0 34.3

Private Sampling 0.0003 0.14
Linear Probing (DPSGD) Iterative Training 5.49 6.3
Esipova et al., 2023 (DPSGD-Global-Adapt) Iterative Training 174 242
Mehta et al., 2023 (DP-LS) Setup 0.49 2.2

Solving 0.28 2.5

Table 3: Computational wall-time measurements of a sin-
gle training on a single machine, limiting each method to a
single GPU. Where applicable, iterative training was limited
to 15 epochs. DPPL-Public’s score computation was con-
ducted for 1,281,167 public samples.

Dataset Method ϵ 0.1 0.5 1.0 2.0

CIFAR10 DPPL-Public 66.1 92.9 92.5 92.9
DP-FiLM 34.1 63.3 67.7 84.4

CIFAR100 DPPL-Public 27.4 51.2 59.9 70.0
DP-FiLM 4.8 20.1 34.1 45.2

Table 4: DP-FiLM vs. DPPL-Public using ImageNet-1K
as public data on CIFAR10 and CIFAR100 with imbalance
ratio 100. We compare at the same ϵ value, although DP-
FiLM provides approximate DP and our method provides
more strict pure DP.
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Figure 25: Minority class accuracies on CIFAR10. We
present the results for the minority classes (lower 25%
quantile) of CIFAR10 on ViT-B-16, ViT-H-14, ViT-L-
16 and ResNet-50, using ImageNet as public data for
DPPL-Public, at different levels of imbalance rations
(IR). We compare to DP-LS by Mehta et al. (2023) and
DPSGD-Global-Adapt by Esipova et al. (2023).
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Figure 26: Minority class accuracies on CIFAR100. We
present the results for the minority classes (lower 25%
quantile) of CIFAR100 on ViT-B-16, ViT-H-14, ViT-L-
16 and ResNet-50, using ImageNet as public data for
DPPL-Public, at different levels of imbalance rations
(IR). We compare to DP-LS by Mehta et al. (2023) and
DPSGD-Global-Adapt by Esipova et al. (2023).
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Figure 27: Minority class accuracies on STL10. We
present the results for the minority classes (lower 25%
quantile) of STL10 on ViT-B-16, ViT-H-14, ViT-L-
16 and ResNet-50, using ImageNet as public data for
DPPL-Public, at different levels of imbalance rations
(IR). We compare to DP-LS by Mehta et al. (2023) and
DPSGD-Global-Adapt by Esipova et al. (2023).
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Figure 28: Minority class accuracies on FOOD101. We
present the results for the minority classes (lower 25%
quantile) of FOOD101 on ViT-B-16, ViT-H-14, ViT-L-
16 and ResNet-50, using ImageNet as public data for
DPPL-Public, at different levels of imbalance rations
(IR). We compare to DP-LS by Mehta et al. (2023) and
DPSGD-Global-Adapt by Esipova et al. (2023).
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Figure 29: DP-LS vs. DP-FC.


