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Abstract—Interactive analytics requires low latency queries in the presence of diverse, complex, and constantly evolving workloads.
To address these challenges, we introduce a polystore, BigDAWG, that tightly couples diverse database systems, data models, and
query languages through use of semantically grouped “Islands of Information”. BigDAWG, which stands for the Big Data Working
Group, seeks to provide location transparency by matching the right system for each workload using black-box model of query and
system performance. In this paper we introduce BigDAWG as a solution to diverse web-based interactive applications and motivate
our key challenges in building BigDAWG. BigDAWG continues to evolve and, where applicable, we have noted the current status of
its implementation.

Index Terms—polystore, federated database system, distributed query processing, data migration

1 INTRODUCTION

Over the past decade, the database community has realized the vi-
sion of “one size does not fit all” by offering specialized database
engines that excel at specific application requirements [15]. Exam-
ples of such targeted systems include column stores for analytics,
main-memory databases for high-throughput transactional workloads,
array databases for numerical computation, and geospatial databases
for location-based services. For interactive applications, selecting the
right database engine is critical for ensuring that query response times
are sufficiently fast. At the same time, there has been a surge in the
number of database systems available and selecting the right one for a
given workload is a non-trivial task. Also, a panacea database is un-
likely to exist for these heterogeneous workloads because many will
include multiple data models, such as combining results from text
analysis with data from a streaming system.

Interactive analytics (IA) further complicate this database selection
problem because their queries are ad-hoc and unlikely to conform to a
static pattern amenable to manual tuning by a database administrator.
If and when an IA workload evolves, the database best suited for it
may change. This triggers data migration, a manual and difficult pro-
cess that often requires an extract, transform, and load (ETL) pipeline.
Such processes can be brittle as data schemas evolve and each pair of
systems will need a distinct ETL process. Usually this step migrates
data between systems in batches at fixed intervals, and such processes
are not responsive to user needs. Given that a workload evolution may
be short-lived, setting up a long-term ETL process to migrate data be-
tween systems may waste both developer and system resources. Ide-
ally, such a data transformation between systems would be adaptive,
automated, and fast.

In light of these diverse database offerings paired with limited ap-
plication developer expertise on database engine selection, we submit
that the time has come for a polystore system that couples disjoint
database engines by providing location transparency to users and a
unified API to support it. While similar to federated database sys-
tems [14, 2, 4] that enable query processing over a set of relational
databases, a polystore, like BigDAWG [7], differs in several ways.
First, many federated systems targeted a single data model, often the
relational model. In BigDAWG, we explicitly consider multiple data
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models. Second, prior federated system research sought to incorporate
several engines under different administrative domains. With Big-
DAWG, we assume control over each of the underlying engines and
how data is mapped to each system. Recent polystore projects inte-
grated analytic relational systems with Hadoop [12, 6], but they ad-
dressed long-running batch analytics and not IA.

As BigDAWG supports many different data models and query lan-
guages, we will explore how to provide access to the underlying en-
gines without requiring the user to learn the interfaces for each engine,
or for them to explicitly specify how data objects are mapped to spe-
cific engines. If we were to provide a single interface and data model
across all engines, while supporting location transparency, the result
would be an uninteresting intersection of the engines that resembles a
key-value store. This arises from the need of each engine to support
a common data model and API, if the user is to abstract away where
the data resides. If not, semantic ambiguities between engines, such
as how a system handles NULL values or like queries, would create
inconsistent results.

To address this tension between providing data transparency and the
need for a unified API, BigDAWG introduces the concept of an Island
of Information. Each island describes a data model, query language
or operators, and set of underlying database engines that support these
semantics. Example islands include ones for relational, text, arrays,
or spatial semantics. With islands a user will declare their expected
semantics for a query – without having to worry about the specifics of
how the data is loaded into the island or the details of interacting with
a specific engine. In Section 2 we discuss how islands are composed
and how users interact with islands.

An important use case for BigDAWG is to support interactive ap-
plications, and in particular web-based ones. To highlight the effec-
tiveness of BigDAWG as an interactive system, we have constructed a
demonstration [8] built upon six different interactive modules for users
to explore and analyze a complex medical dataset collected from an in-
tensive care unit [13]. To support a wide range of front-end use cases
and back-end storage engines, we utilize a JSON based REST API
for users to query and interact with the system. Section 2.3 outlines
this API. To support low-latency queries required by interactive ap-
plications, BigDAWG must continually monitor how various queries
perform on the underlying engines, and migrate data to the appropriate
engine with minimal disruption to the user. As we have full control of
the data placement and are not limited to one copy of a data object, we
will also explore self-managed replication of objects between engines.
Here, BigDAWG will need to consider the trade-offs of increasing data
loading costs, and the ability to shed load between engines and proac-
tively exploring the performance characteristics of each engine. Sec-
tion 3 discusses these and other design goals for building BigDAWG.

2 BIGDAWG ARCHITECTURE

BigDAWG supports complex queries for IA using a new architecture
for data storage and retrieval designed around data independence. It



consists of four distinct layers as shown in Figure 1: Database and
storage engines; Islands; BigDAWG API; and Applications.

These layers provide visualization tools and developers with a uni-
form interface to a variety of database and storage engines. For exam-
ple, in the notional architecture described in Figure 1, a visualization
would only need to communicate with the the BigDAWG API to ac-
cess a potentially large number of islands and database engines.

2.1 Database and Storage Engines
Complex interactive analytics will draw from a variety of database and
storage engines. Database and storage engines make up the base layer
of the architecture shown in Figure 1. To support complex queries
and data models, BigDAWG does not enforce any requirements on the
underlying database engine. To integrate a database with BigDAWG,
one or more shims are needed to integrate and potentially translate data
from the database to BigDAWG.

To support interactive queries where low latency and high perfor-
mance are key, BigDAWG also provides support for newer streaming
databases, such as S-Store [3]. In the current implementation of Big-
DAWG, we also support a diverse set of database engines: SciDB [1],
PostgreSQL [16], Accumulo [9], and MyriaX [11].

2.2 Islands of Information
The BigDAWG API connects to different database and storage en-
gines via a logical layer known as an island. An island of information
is an abstraction for the functionality, programming and query lan-
guage, and data model of underlying database engines. Each island
is composed of a set of databases, and a shim to communicate with
each database. If a database belongs to more than one island, then a
shim per island is required to ensure that this database adheres to each
island’s semantics. These shims connect databases to the API layer
and take care of moving information and queries across islands and
engines. The use of semantic islands and shims is similar to the use
of mediators and wrappers from earlier federated systems [2, 4, 17].
However, these earlier techniques focused on domain-specific func-
tionality, or views, and not on data models that may be disjoint or
partially overlapping.

A cross-database island supports the intersection of functionality
between underlying database engines. BigDAWG on the other hand,
provides support for the union of operations supported by all islands.
For example in Figure 1, the array island is a cross-system island that
provides an array data model and query interface to applications using
BigDAWG to connect to relational database (RDBMS) X or to array
database (DBMS). However, RDBMS X is also accessible through the
relational island or array island in order to expose another data model
or programming interface – such as a spatial island if RDBMS X sup-
ports spatial indexes and objects. For database engines without ex-
isting island support, BigDAWG supports the creation of degenerate
islands that provide support for a single engine.

BigDAWG currently supports four cross-system islands and a num-
ber of degenerate islands. In addition to array and relation islands, the
Dynamic Distributed Dimensional Model (D4M) [10] and Myria [11]
islands provide two different interfaces to interacting with an overlap-
ping set of database engines. For example, D4M supports an associa-
tive array data model and queries that are written using linear algebraic
operations. Myria, on the other hand, supports a relational data model
augmented by iteration and queries that are written with this extension
of relational algebra. Both D4M and Myria have shims that connect to
their supported database engines.

2.3 BigDAWG API Layer
The BigDAWG API layer consists of server- and client-facing com-
ponents. BigDAWG incorporates many different islands which con-
nect to database engines via shims. Clients interact with these islands
through two important operations: SCOPE and CAST.

2.3.1 User-Facing Operations
Islands provide a particular language and interface to database(s).
However, not all interactive analytics can be completed within a single
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Fig. 1. The BigDAWG Architecture.

island. Instead, BigDAWG allows users to express their query using
any combination of islands. In order to provide a uniform view of the
data and query, BigDAWG will move data or intermediate results be-
tween engines and islands as necessary. To specify a particular island
of information, a user indicates a SCOPE in their query. A SCOPE al-
lows users to control the data model and programming interface with
which they wish their queries to be executed. A cross-island query
may have multiple scopes to indicate the desired semantics of its parts.
For queries that rely on cross-island interaction, BigDAWG also offers
CAST operations that can automatically move data between database
and storage engines – and subsequently between islands. For example,
a user may wish to correlate information stored in an array, A, with
data in a relational database, R, using a relational island. To execute
such a query, the user can issue the full query with the RELATIONAL
SCOPE and CAST data from A to the relational database. For exam-
ple:
RELATIONAL(SELECT * FROM R, CAST(A,

relation) WHERE R.v = 5 and R.id = A.id);
The above query produces a result that, from a user’s perspective,

looks like the entire array A was moved into a relational table in order
to execute. Further, by specifying that the context (via SCOPE) of the
query as RELATIONAL, the user has explicit control over the type
of operation and result obtained. For example, issuing a JOIN with a
RELATIONAL scope may yield different results than issuing a JOIN
with an ARRAY scope.

In the current implementation, BigDAWG supports numerous is-
lands. Of these islands, four are cross-system islands and the remain-
ing are degenerate islands for each supported database engine.

2.3.2 Detailed API

One of the large challenges in the BigDAWG API is supporting queries
that are agnostic to the underlying database engine. The API makes
use of a REST Java service for common database interactions; we
support Query and Alert Registration for streaming services. In order
to integrate easily with applications and visualizations we use JSON-
formatted data.

The Query command is a JSON object that takes a number of re-
quired and optional inputs. Table 1 shows the query and response API
a client would use. The query parameter is a string that contains one
or more SCOPE operators, and zero or more CAST operators.

The Alert Registration can be used for streaming databases such
as S-Store to register instances where alerts should be passed through
BigDAWG. We envision such a service being used for visualization
and IA that look at streaming data and alert users when certain con-
ditions are met (or not met). The current version of the API is also
described in Table 1.

To support interactive visualization, the Query API allows for ap-
plication writers to list the number of Tuples per Page returned
by a query with optional additional pagination parameters. Although
we will support an interactive flag to indicate the query should
return quickly, we are working on expanding user-provided hints for
estimating the approximate size and/or latency of results. For exam-
ple, certain queries return a very large number of entries which may
be undesirable for IA.

We are also looking at ways to improve performance by caching



Name Type Req Description
Query API

Query String Yes Query with CAST and SCOPE operations
Authorization Object Yes User Authorization
TuplesPerPage Integer No Number of tuples per page
PageNumber Integer No Request for particular page
ResultsAsOf Timestamp No Results as of a particular time
Interactive Boolean No Hint for quick results

Query Response
Response Code Integer HTTP response code

Tuples List A JSON list of tuples
Number of Tuples Integer Total number of tuples

Page Number Integer This page number
Number of Pages Integer Total number of pages

Schema List A list of <name, type >values
Timestamp Timestamp The freshness of the results

Alert Registration API
Query String Yes Query that system can provide alert on

NotifyURL String Yes URL to call when alert is made
Authorization Object Yes User Authorization

OneTime Bool Yes Is this a one time alert?
Alert Registration Response

Response Code Integer HTTP response code
Status URL String URL to check for results

Table 1. The BigDAWG client query and alert registration API.

certain results at the BigDAWG middleware level and using the poly-
store for load balancing across engines. The current implementation
of CAST is done via use of CSV export and import into temporary
tables. We are currently investigating ways to cast data directly from
one engine to another via a more efficient binary loading process. The
following section expands on our future design goals of BigDAWG.

3 CHALLENGES AND DESIGN GOALS

In building BigDAWG, we have identified several key challenges, in-
cluding island discovery and query decomposition across multiple en-
gines [7]. While these goals are important for a wide class of usage
patterns, for a polystore to be effective for IAs it is especially critical
to identify the ideal database for the interactive workload, migrate data
to the appropriate engine when workload or requirements change, and
minimize the overhead of having data flow through the middleware
translators. In this section we outline our research goals for enabling
effective IAs in BigDAWG.

For our initial BigDAWG implementation, we have constructed a
number of prototype pieces of the overall architecture of Figure 1.
In particular, we have developed basic SHIMs to move data between
islands and database engines as well as a simple method that leverages
CSV export/import to cast data between engines. In order to further
develop BigDAWG, we will make use of detailed query monitoring
statistics such as query execution time, machine level statistics and
cast execution time. Further, we assume that the datasets we access
have defined schemas that exist for all query-able objects.

3.1 Modeling Workloads and Systems
Low latency queries are key for IA and visualizations. From a database
perspective, maintaining low query latency can be achieved through
different mechanisms such as approximate queries, scaling of server
hardware, intelligent result caching and/or optimized database selec-
tion. While approximation, elasticity, and proactive caching are active
areas of research for BigDAWG collaborators, our current effort con-
centrates on proper data placement to promote low latency queries.

The same data may be accessed in different ways, for example, ana-
lyzed vertically or horizontally. In the long term, the types of analysis
will determine where the data will be stored. One example pertains to
notes about patients from our motivating medical use case [13]. A typ-
ical data access approach may be to display holistic information about

a patient, including his or her notes which were written by a physi-
cian (vertical analysis). In this case the patient structured data (e.g.
age, visits) should be stored in a relational database like PostgreSQL.
On the other hand, when a physician wants to find notes that mention
a given illness, then a fast text processing should be carried out, and
the data should be moved to a text processing engine, such as Accu-
mulo (for horizontal processing). Similarly, the waveform data from
medical monitoring devices could be analyzed for a single patient in a
relational database or a batch of them should be processed efficiently
(e.g. numerical analysis) in an array database, such as SciDB.

To properly place data objects, the system must understand both the
types of queries being executed (e.g. the workload, underlying data
model) and how a database system is expected to perform the query.
We expect the number of supported queries and number of databases
to be large. Given this, it will be difficult to come up with pre-defined
rules or exhaustive solutions that cover all possible cases. Instead,
we propose to use black-box approaches for workload modeling and
system performance.

For workload modeling, we must derive strategies to classify and
extract features for the wide variety of encountered queries. Examples
of broad query classifications include filter and group-by aggregation
queries (e.g. histogram), matrix based operations (e.g. linear regres-
sion), counting queries, selection queries (e.g. get by ID), or complex
joins. Our initial approach to classifying queries will be to use textual
similarities in query strings, as well as using exposed database query
plans to understand the derived query plan tree. The end goal of this
query classifier will be to extract features from a textual query, such as
the number of joins, filters, predicate selectivity, and so on. These ap-
proaches will rely on supervised learning techniques to bootstrap the
system.

With query classes and features, and the ability to CAST data be-
tween the systems, BigDAWG will rely on black-box performance
profiling of underlying databases. We plan on executing such profil-
ing in three modes. First, in training mode, BigDAWG will “replay”
every executed query on all systems when system resources are abun-
dant. This will allow the system to build an initial profile of how the
systems perform for a given query’s feature and class. Second, in the
opportunistic mode, BigDAWG records queries to periodically replay
on all engines over time in periods of low activity. This allows the sys-
tem to profile without over-consuming resources, and repeated profil-



ing will help model how consistent query performance is with chang-
ing workloads, loads, and hardware. Finally, in the optimized mode,
BigDAWG will execute each query on one or two systems when re-
sources are constrained. If enough profile data has not been gathered,
BigDAWG will randomly select one or two engines to execute the
query on. Over time, this will build up a performance model that can
be used to select the appropriate engine for using techniques similar to
collaborative filtering [5].

BigDAWG can utilize these workload and system performance
models to make decisions about query planning when data is repli-
cated, and about long term data placement to ensure that data resides
in the ideal system.

3.2 Data Transfers Between Databases

Data movement between engines is a key requirement for BigDAWG
applications. For each data object, there may be multiple database
candidates within an island, and users are given the abilty to explicitly
move data between islands via the CAST operator. Therefore, fast
data transfer between databases is a crucial use case for BigDAWG.
Designing an efficient solution is difficult due to bottlenecks emerging
from disk Input/Output, network Input/Output, or CPU cycles.

To begin exploring the design space of cross-system data migration,
we use patient device data as described in Section 3.1 and limit our
focus to data transfer between PostgreSQL and SciDB.

Data transfer between databases can be executed on many levels
ranging from external connectors to built-in solutions which facilitate
direct data transfer from one database to another. The external so-
lutions are flexible but can suffer from low performance. CSV is the
most common data format for external files from which data are loaded
to databases. In our experience, data loading between these systems
is a very CPU intensive process due to parsing and deserialization.
This suggests a major accelerator is applying parallelism when loading
data. However, while SciDB offers parallel data loading, PostgreSQL
does not. The easiest way to harness parallelism in case of PostgreSQL
is to partition the data to be transfered, for example, on a primary key
or another attribute(s) which would enable simple division. For exam-
ple, we can generate the output data in parallel using many clients in
PostgreSQL and then load the partitions in parallel from many clients
connected to SciDB (each client from PostgreSQL can communicate
with exactly one client from SciDB). However, there is a drawback.
When we load data the first time to PostgreSQL we can enclose cre-
ation of a table and data loading in a single transaction. This allows
us to eschew excessive logging (which adds about 8% to the loading
time). When, we load data in parallel from many clients, we lose the
ability to avoid logging overhead.

Built-in solutions that enable faster data transfers require non-trivial
changes to the internal design and implementation of data loading and
export features. Each database exposes its inherent and specific binary
format which either has to be changed inside the database or the binary
data has to be transformed from one format to another on the fly during
each data transfer. The following experiment motivates the need for
optimized solutions.

Figure 2 shows data migration from PostgreSQL to SciDB. The
data contains sampled physiological waveforms from the MIMIC II
dataset [13], such as electrocardiogram, blood pressure and respira-
tions. The dataset size ranges from 1 to 30 GB in CSV format and con-
tain waveform values of doubles with two dimension columns: patient
identifier and millisecond timestamp. We present three approaches
to data migration. The first approach exports, transfers, and imports
data in CSV format. The second one directly exports binary data from
PostgreSQL, then transforms the data to SciDB binary format on the
fly and loads the data to SciDB. For the third approach we modify
PostgreSQL to immediately generate data in SciDB’s binary format
such that data is directly loaded to SciDB. Due to reduced parsing and
deserialization overhead, the binary migrations become significantly
faster than a CSV-based migration.
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Fig. 2. Data migration from PostgreSQL to SciDB.

3.3 Cross-System Dynamic Replication
As BigDAWG is not limited to one copy of each data object, we plan
to explore how to manage replication across systems to improve query
performance. Building a dynamic replication technique requires sev-
eral advances. We plan to explore building models replicating data
between systems, using both middleware controlled replication from
the API layer, as well as using the CAST operators to synchronize data
objects directly between systems. While a streaming CAST operation
will likely have lower performance impact on data loading, it will have
a reduced level of control as compared with a middleware based ap-
proach. With a middleware controlled replication we can on-the-fly
track the state of object replication and dynamically scale back how
data is replicated in response to either (i) high update rates or (ii) sus-
tained changes in the workload that favor a single engine. In addition
to exploring the trade-offs of replication mechanisms, BigDAWG will
need to make decisions about which data objects should be replicated,
on which engines, and how many replicas should exist for each object.

3.4 Data Transformation from DBMS to JSON
Data in different formats from various databases will need to be uni-
fied in one common format for client consumption. We use JSON as
a common format which is more concise than XML. A JSON format,
combined with the HTTP API exposed by BigDAWG makes it easy for
a variety of applications to query data. Other benefits include easier ac-
cess to data via tools such as cURL, web browsers, new programming
languages, and mobile applications. A JSON middleware also solves
certain security challenges. For example, it shields the databases from
direct and intrusive access.

However, in our initial experiments we found that up to 10% of the
total query processing time in BigDAWG is spent on preparation of the
final result in JSON format. While this percentage is larger when the
underlying data is stored, or cached, in RAM, it can be a significant
overhead when low latency is a primary goal. Therefore, a part of
BigDAWG will be exploring efficient data transformation to JSON,
either through using user defined functions in the database, caching
large data objects as JSON in the middleware, or through use of native
JSON in the database when available – such as in PostgreSQL.

4 CONCLUSION

Interactive and web-based analytic applications use data in a wide vari-
ety of ways. Our polystore system, BigDAWG, will ease the burden of
selecting the right specialized database to ensure low latency queries.
In this article, we discuss BigDAWG’s architecture and outline sev-
eral key challenges including fast data migration, workload modeling,
dynamic replication, and data transformation.
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